
Ledger: Command-Line Accounting
For Version 3.3.2 of Ledger

John Wiegley

Copyright c© 2003–2023, John Wiegley. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the name of New Artisans LLC nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

i

Table of Contents

1 Introduction to Ledger . 1
1.1 Fat-free Accounting . 1
1.2 Building the program . 3
1.3 Getting help . 3
1.4 Third-Party Ledger Tutorials . 3

2 Ledger Tutorial . 4
2.1 Start a Journal File . 4
2.2 Run a Few Reports . 4

2.2.1 Balance Report . 4
2.2.2 Register Report . 5
2.2.3 Cleared Report . 6
2.2.4 Using the Windows Command-Line . 6

3 Principles of Accounting with Ledger 7
3.1 Accounting with Ledger . 7
3.2 Stating where money goes . 7
3.3 Assets and Liabilities . 7

3.3.1 Tracking reimbursable expenses . 8
3.4 Commodities and Currencies . 11

3.4.1 Commodity price histories . 12
3.4.2 Commodity equivalences . 12

3.5 Accounts and Inventories . 13
3.6 Understanding Equity . 13
3.7 Dealing with Petty Cash . 14
3.8 Working with multiple funds and accounts . 14

4 Keeping a Journal . 17
4.1 The Most Basic Entry . 17
4.2 Starting up . 18
4.3 Structuring your Accounts . 18
4.4 Commenting on your Journal . 18
4.5 Currency and Commodities . 19

4.5.1 Naming Commodities . 20
4.5.2 Buying and Selling Stock . 20
4.5.3 Fixing Lot Prices . 21
4.5.4 Complete control over commodity pricing 21

4.6 Keeping it Consistent . 23
4.7 Journal Format . 24

4.7.1 Transactions and Comments . 24
4.7.2 Command Directives . 25

4.8 Converting from other formats . 30
4.9 Archiving Previous Years . 31

ii

5 Transactions . 32
5.1 Basic format . 32
5.2 Eliding amounts . 32
5.3 Auxiliary dates . 32
5.4 Codes . 33
5.5 Transaction state . 33
5.6 Transaction notes . 34
5.7 Metadata . 34

5.7.1 Metadata tags . 34
5.7.2 Metadata values . 34
5.7.3 Typed metadata . 35
5.7.4 Payee metadata . 35

5.8 Virtual postings . 36
5.9 Expression amounts . 36
5.10 Balance verification . 36

5.10.1 Balance assertions . 36
5.10.1.1 Special assertion value 0 . 37

5.10.2 Balance assignments . 37
5.10.3 Resetting a balance . 37
5.10.4 Balancing transactions . 38

5.11 Posting cost . 38
5.12 Explicit posting costs . 38

5.12.1 Primary and secondary commodities . 38
5.13 Posting cost expressions . 39
5.14 Total posting costs . 39
5.15 Virtual posting costs . 39
5.16 Commodity prices . 39

5.16.1 Total commodity prices . 40
5.17 Prices versus costs . 41
5.18 Fixated prices and costs . 41
5.19 Lot dates . 42
5.20 Lot notes . 42
5.21 Lot value expressions . 42
5.22 Automated Transactions . 43

5.22.1 Amount multipliers . 43
5.22.2 Accessing the matching posting’s amount 44
5.22.3 Referring to the matching posting’s account 44
5.22.4 Applying metadata to every matched posting 45
5.22.5 Applying metadata to the generated posting 45
5.22.6 State flags . 46
5.22.7 Effective Dates . 46
5.22.8 Periodic Transactions . 47
5.22.9 Concrete Example of Automated Transactions 47

5.22.9.1 Tithing . 47
5.22.9.2 Credit Card Cashback . 48

iii

6 Building Reports . 49
6.1 Introduction . 49
6.2 Balance Reports . 49

6.2.1 Controlling the Accounts and Payees . 49
6.2.2 Controlling Formatting . 50

6.3 Typical queries . 50
6.3.1 Reporting monthly expenses . 50

6.4 Advanced Reports . 51
6.4.1 Asset Allocation . 51
6.4.2 Visualizing with Gnuplot . 53

7 Reporting Commands . 54
7.1 Primary Financial Reports . 54

7.1.1 The balance command . 54
7.1.2 The equity command . 54
7.1.3 The register command . 54
7.1.4 The print command . 54

7.2 Reports in other Formats . 54
7.2.1 Comma Separated Values files . 54

7.2.1.1 The csv command . 54
7.2.1.2 The convert command . 55

7.2.2 The lisp command . 56
7.2.3 Emacs org Mode . 57
7.2.4 Org mode with Babel . 57

7.2.4.1 Embedded Ledger example with single source block . . . 58
7.2.4.2 Multiple Ledger source blocks with noweb 59
7.2.4.3 Income Entries . 59
7.2.4.4 Expenses . 60
7.2.4.5 Financial Summaries . 60
7.2.4.6 An overall balance summary . 60
7.2.4.7 Generating a monthly register . 61
7.2.4.8 Summary . 61

7.2.5 The pricemap command . 61
7.2.6 The xml command . 62
7.2.7 prices and pricedb commands . 64

7.3 Reports about your Journals . 64
7.3.1 accounts . 64
7.3.2 payees . 64
7.3.3 commodities . 64
7.3.4 tags . 64
7.3.5 xact . 64
7.3.6 stats . 65
7.3.7 select . 65

iv

8 Command-Line Syntax . 66
8.1 Basic Usage . 66
8.2 Command-Line Quick Reference . 66

8.2.1 Basic Reporting Commands . 66
8.2.2 Basic Options . 67
8.2.3 Report Filtering . 67
8.2.4 Error Checking and Calculation Options 68
8.2.5 Output Customization . 68
8.2.6 Grouping Options . 70
8.2.7 Commodity Reporting . 70

8.3 Detailed Option Description . 71
8.3.1 Global Options . 71
8.3.2 Session Options . 72
8.3.3 Report Options . 74
8.3.4 Basic options . 86
8.3.5 Report filtering . 87
8.3.6 Output customization . 88
8.3.7 Commodity reporting . 92
8.3.8 Environment variables . 95

8.4 Period Expressions . 95

9 Budgeting and Forecasting . 97
9.1 Budgeting . 97
9.2 Forecasting . 97

10 Time Keeping . 99

11 Value Expressions . 100
11.1 Variables . 100

11.1.1 Posting/account details . 100
11.1.2 Calculated totals . 101

11.2 Functions . 101
11.3 Operators . 101

11.3.1 Unary Operators . 101
11.3.2 Binary Operators . 102

11.4 Complex expressions . 102
11.4.1 Miscellaneous . 103

v

12 Format Strings . 109
12.1 Format String Basics . 109
12.2 Format String Structure . 109
12.3 Format Expressions . 109
12.4 Balance format . 111
12.5 Formatting Functions and Codes . 111

12.5.1 Field Widths . 111
12.5.2 Colors . 111
12.5.3 Quantities and Calculations . 112
12.5.4 Date Functions . 112
12.5.5 Date and Time Format Codes . 112

12.5.5.1 Days . 113
12.5.5.2 Weekdays . 113
12.5.5.3 Month . 113
12.5.5.4 Miscellaneous Date Codes . 114

12.5.6 Text Formatting . 114
12.5.7 Data File Parsing Information . 114

13 Extending with Python . 115
13.1 Basic data traversal . 115
13.2 Raw versus Cooked . 115
13.3 Queries . 116
13.4 Embedded Python . 116
13.5 Amounts . 116

14 Ledger for Developers . 117
14.1 Internal Design . 117
14.2 Journal File Format for Developers . 120

14.2.1 Comments and meta-data . 121
14.2.2 Specifying Amounts . 121

14.2.2.1 Integer Amounts . 121
14.2.2.2 Commoditized Amounts . 122

14.2.3 Posting costs . 122
14.2.4 Primary commodities . 123

14.3 Developer Commands . 123
14.3.1 echo . 123
14.3.2 reload . 124
14.3.3 source . 124
14.3.4 Debug Options . 124
14.3.5 Pre-Commands . 125

14.4 Ledger Development Environment . 127
14.4.1 acprep build configuration tool . 127
14.4.2 Testing Framework . 127

14.4.2.1 Running Tests . 127
14.4.2.2 Writing Tests . 127

vi

15 Major Changes from version 2.6 129

Appendix A Example Journal File 130

Appendix B Miscellaneous Notes 132
B.1 Cookbook . 132

B.1.1 Invoking Ledger . 132
B.1.2 Ledger Files . 132

Concepts Index . 133

Commands & Options Index . 135

1

1 Introduction to Ledger

1.1 Fat-free Accounting

Ledger is an accounting tool with the moxie to exist. It provides no bells or whistles, and
returns the user to the days before user interfaces were even a twinkling in their father’s
CRT.

What it does offer is a double-entry accounting journal with all the flexibility and muscle
of its modern day cousins, without any of the fat. Think of it as the Bran Muffin of
accounting tools.

To use it, you need to start keeping a journal. This is the basis of all accounting, and if
you haven’t started yet, now is the time to learn. The little booklet that comes with your
checkbook is a journal, so we’ll describe double-entry accounting in terms of that.

A checkbook journal records debits (subtractions, or withdrawals) and credits (additions,
or deposits) with reference to a single account: the checking account. Where the money
comes from, and where it goes to, are described in the payee field, where you write the
person or company’s name. The ultimate aim of keeping a checkbook journal is to know
how much money is available to spend. That’s really the aim of all journals.

What computers add is the ability to walk through these postings, and tell you things
about your spending habits; to let you devise budgets and get control over your spending; to
squirrel away money into virtual savings account without having to physically move money
around; etc. As you keep your journal, you are recording information about your life and
habits, and sometimes that information can start telling you things you aren’t aware of.
Such is the aim of all good accounting tools.

The next step up from a checkbook journal, is a journal that keeps track of all your
accounts, not just checking. In such a journal, you record not only who gets paid—in the
case of a debit—but where the money came from. In a checkbook journal, it’s assumed
that all the money comes from your checking account. But in a general journal, you write
postings in two lines: the source account and target account. There must always be a debit
from at least one account for every credit made to another account. This is what is meant by
“double-entry” accounting: the journal must always balance to zero, with an equal number
of debits and credits.

For example, let’s say you have a checking account and a brokerage account, and you
can write checks from both of them. Rather than keep two checkbooks, you decide to use
one journal for both. In this general journal you need to record a payment to Pacific Bell
for your monthly phone bill, and a transfer (via check) from your brokerage account to your
checking account. The Pacific Bell bill is $23.00, let’s say, and you want to pay it from your
checking account. In the general journal you need to say where the money came from, in
addition to where it’s going to. These transactions might look like this:

9/29 Pacific Bell $23.00 $23.00

Checking $-23.00 0

9/30 Checking $100.00 $100.00

(123) Brokerage $-100.00 0

The posting must balance to $0: $23 went to Pacific Bell, $23 came from Checking. The
next entry shows check number 123 written against your brokerage account, transferring

Chapter 1: Introduction to Ledger 2

money to your checking account. There is nothing left over to be accounted for, since the
money has simply moved from one account to another in both cases. This is the basis of
double-entry accounting: money never pops in or out of existence; it is always a posting
from one account to another.

Keeping a general journal is the same as keeping two separate journals: One for Pacific
Bell and one for Checking. In that case, each time a payment is written into one, you write
a corresponding withdrawal into the other. This makes it easier to write in a “running
balance”, since you don’t have to look back at the last time the account was referenced—
but it also means having a lot of journal books, if you deal with multiple accounts.

Here is a good place for an aside on the use of the word “account”. Most private people
consider an account to be something that holds money at an institution for them. Ledger
uses a more general definition of the word. An account is anywhere money can go. Other
finance programs use “categories”, Ledger uses accounts. So, for example, if you buy some
groceries at Trader Joe’s, then more groceries at Whole Food Market, you might assign the
transactions like this

2011/03/15 Trader Joe's

Expenses:Groceries $100.00

Assets:Checking

2011/03/15 Whole Food Market

Expenses:Groceries $75.00

Assets:Checking

In both cases the money goes to the ‘Groceries’ account, even though the payees were
different. You can set up your accounts in any way you choose.

Enter the beauty of computerized accounting. The purpose of the Ledger program is
to make general journal accounting simple, by keeping track of the balances for you. Your
only job is to enter the postings. If an individual posting does not balance, Ledger displays
an error and indicates the incorrect posting.1

In summary, there are two aspects of Ledger use: updating the journal data file, and
using the Ledger tool to view the summarized result of your transactions.

And just for the sake of example—as a starting point for those who want to dive in
head-first—here are the journal transactions from above, formatted as the Ledger program
wishes to see them:

2004/09/29 Pacific Bell

Expenses:Pacific Bell $23.00

Assets:Checking

The account balances and registers in this file, if saved as ledger.dat, could be reported
using:

$ ledger -f ledger.dat balance

$-23.00 Assets:Checking

$23.00 Expenses:Pacific Bell

0

Or

$ ledger -f ledger.dat register checking

04-Sep-29 Pacific Bell Assets:Checking $-23.00 $-23.00

1 In some special cases, it automatically balances this transaction for you.

Chapter 1: Introduction to Ledger 3

And even:
$ ledger -f ledger.dat register Bell

04-Sep-29 Pacific Bell Expenses:Pacific Bell $23.00 $23.00

An important difference between Ledger and other finance packages is that Ledger will
never alter your input file. You can create and edit that file in any way you prefer, but
Ledger is only for analyzing the data, not for altering it.

1.2 Building the program

Ledger is written in ANSI C++, and should compile on any unix platform. The easiest
way to build and install ledger is to use the prepared acprep script, that does a lot of the
footwork:

to install missing dependencies

./acprep dependencies

building ledger

./acprep update

to run the actual installation

make install

See the ‘help‘ subcommand to ‘acprep‘, which explains some of its many options. You
can run ‘make check‘ to confirm the result, and ‘make install‘ to install. If these instructions
do not work for you, you can check the ‘INSTALL.md‘ in the source directory for more up
to date build instructions.

1.3 Getting help

Ledger has a complete online help system based on GNU Info. This manual can be searched
directly from the command-line using info ledger, which will bring up this entire manual
in your TTY. Alternatively, the shorter man page can be accessed from the command-line
either via man ledger or ledger --help

If you need help on how to use Ledger, or run into problems, you can join the Ledger
mailing list at http://groups.google.com/group/ledger-cli.

You can also find help in the #ledger channel on the IRC server irc.libera.chat.

1.4 Third-Party Ledger Tutorials

There are plenty of people using Ledger for accounting applications. Some have documented
how they use Ledger’s features to solve their accounting problems.

One such tutorial, specifically designed for non-profit charities that seek to use Ledger,
can be found at https://k.sfconservancy.org/NPO-Accounting/npo-ledger-cli (with
a copy on GitHub also available at https://github.com/conservancy/npo-ledger-cli/
). If you’re looking for information about how to use Ledger’s tagging system to handle
invoicing, track expenses by program targets, and other such concepts, you might find the
tutorial useful. (Some of the auditor reporting scripts that relate to the aforementioned
Ledger setup can be found contrib/non-profit-audit-reports/ in Ledger’s own source repos-
itory.)

http://groups.google.com/group/ledger-cli
https://k.sfconservancy.org/NPO-Accounting/npo-ledger-cli
https://github.com/conservancy/npo-ledger-cli/
https://github.com/conservancy/npo-ledger-cli/

4

2 Ledger Tutorial

2.1 Start a Journal File

A journal is a record of your financial transactions and will be central to using Ledger. For
now we just want to get a taste of what Ledger can do. An example journal is included with
the source code distribution, called drewr3.dat (see Appendix A [Example Journal File],
page 130). Copy it someplace convenient and open up a terminal window in that directory.

If you would rather start with your own journal right away please see Chapter 4 [Keeping
a Journal], page 17.

2.2 Run a Few Reports

Please note that as a command-line program, Ledger is controlled from your shell. There
are several different command shells that all behave slightly differently with respect to some
special characters. In particular, the “bash” shell will interpret ‘$’ signs differently than
ledger and they must be escaped to reach the actual program. Another example is “zsh”,
which will interpret ‘^’ differently than ledger expects. In all cases that follow you should
take that into account when entering the command-line arguments as given. There are too
many variations between shells to give concrete examples for each.

2.2.1 Balance Report

To find the balances of all of your accounts, run this command:
$ ledger -f drewr3.dat balance

Ledger will generate:
$ -3,804.00 Assets

$ 1,396.00 Checking

$ 30.00 Business

$ -5,200.00 Savings

$ -1,000.00 Equity:Opening Balances

$ 6,654.00 Expenses

$ 5,500.00 Auto

$ 20.00 Books

$ 300.00 Escrow

$ 334.00 Food:Groceries

$ 500.00 Interest:Mortgage

$ -2,030.00 Income

$ -2,000.00 Salary

$ -30.00 Sales

$ -63.60 Liabilities

$ -20.00 MasterCard

$ 200.00 Mortgage:Principal

$ -243.60 Tithe

$ -243.60

Showing you the balance of all accounts. Options and search terms can pare this down to
show only the accounts you want.

A more useful report is to show only your Assets and Liabilities:
$ ledger -f drewr3.dat balance Assets Liabilities

$ -3,804.00 Assets

Chapter 2: Ledger Tutorial 5

$ 1,396.00 Checking

$ 30.00 Business

$ -5,200.00 Savings

$ -63.60 Liabilities

$ -20.00 MasterCard

$ 200.00 Mortgage:Principal

$ -243.60 Tithe

$ -3,867.60

2.2.2 Register Report

To show all transactions and a running total:

$ ledger -f drewr3.dat register

Ledger will generate:

10-Dec-01 Checking balance Assets:Checking $ 1,000.00 $ 1,000.00

Equit:Opening Balances $ -1,000.00 0

10-Dec-20 Organic Co-op Expense:Food:Groceries $ 37.50 $ 37.50

Expense:Food:Groceries $ 37.50 $ 75.00

Expense:Food:Groceries $ 37.50 $ 112.50

Expense:Food:Groceries $ 37.50 $ 150.00

Expense:Food:Groceries $ 37.50 $ 187.50

Expense:Food:Groceries $ 37.50 $ 225.00

Assets:Checking $ -225.00 0

10-Dec-28 Acme Mortgage Lia:Mortgage:Principal $ 200.00 $ 200.00

Expe:Interest:Mortgage $ 500.00 $ 700.00

Expenses:Escrow $ 300.00 $ 1,000.00

Assets:Checking $ -1,000.00 0

11-Jan-02 Grocery Store Expense:Food:Groceries $ 65.00 $ 65.00

Assets:Checking $ -65.00 0

11-Jan-05 Employer Assets:Checking $ 2,000.00 $ 2,000.00

Income:Salary $ -2,000.00 0

(Liabilities:Tithe) $ -240.00 $ -240.00

11-Jan-14 Bank Assets:Savings $ 300.00 $ 60.00

Assets:Checking $ -300.00 $ -240.00

11-Jan-19 Grocery Store Expense:Food:Groceries $ 44.00 $ -196.00

Assets:Checking $ -44.00 $ -240.00

11-Jan-25 Bank Assets:Checking $ 5,500.00 $ 5,260.00

Assets:Savings $ -5,500.00 $ -240.00

11-Jan-25 Tom's Used Cars Expenses:Auto $ 5,500.00 $ 5,260.00

Assets:Checking $ -5,500.00 $ -240.00

11-Jan-27 Book Store Expenses:Books $ 20.00 $ -220.00

Liabilities:MasterCard $ -20.00 $ -240.00

11-Dec-01 Sale Asse:Checking:Business $ 30.00 $ -210.00

Income:Sales $ -30.00 $ -240.00

(Liabilities:Tithe) $ -3.60 $ -243.60

To limit this to a more useful subset, simply add the accounts you are interested in seeing
transactions for:

$ ledger -f drewr3.dat register Groceries

10-Dec-20 Organic Co-op Expense:Food:Groceries $ 37.50 $ 37.50

Expense:Food:Groceries $ 37.50 $ 75.00

Expense:Food:Groceries $ 37.50 $ 112.50

Expense:Food:Groceries $ 37.50 $ 150.00

Expense:Food:Groceries $ 37.50 $ 187.50

Expense:Food:Groceries $ 37.50 $ 225.00

11-Jan-02 Grocery Store Expense:Food:Groceries $ 65.00 $ 290.00

Chapter 2: Ledger Tutorial 6

11-Jan-19 Grocery Store Expense:Food:Groceries $ 44.00 $ 334.00

Which matches the balance reported for the ‘Groceries’ account:
$ ledger -f drewr3.dat balance Groceries

$ 334.00 Expenses:Food:Groceries

If you would like to find transaction to only a certain payee use ‘payee’ or ‘@’:
$ ledger -f drewr3.dat register payee "Organic"

10-Dec-20 Organic Co-op Expense:Food:Groceries $ 37.50 $ 37.50

Expense:Food:Groceries $ 37.50 $ 75.00

Expense:Food:Groceries $ 37.50 $ 112.50

Expense:Food:Groceries $ 37.50 $ 150.00

Expense:Food:Groceries $ 37.50 $ 187.50

Expense:Food:Groceries $ 37.50 $ 225.00

Assets:Checking $ -225.00 0

2.2.3 Cleared Report

A very useful report is to show what your obligations are versus what expenditures have
actually been recorded. It can take several days for a check to clear, but you should treat
it as money spent. The cleared report shows just that (note that the cleared report will
not format correctly for accounts that contain multiple commodities):

$ ledger -f drewr3.dat cleared

$ -3,804.00 $ 775.00 Assets

$ 1,396.00 $ 775.00 10-Dec-20 Checking

$ 30.00 0 Business

$ -5,200.00 0 Savings

$ -1,000.00 $ -1,000.00 10-Dec-01 Equity:Opening Balances

$ 6,654.00 $ 225.00 Expenses

$ 5,500.00 0 Auto

$ 20.00 0 Books

$ 300.00 0 Escrow

$ 334.00 $ 225.00 10-Dec-20 Food:Groceries

$ 500.00 0 Interest:Mortgage

$ -2,030.00 0 Income

$ -2,000.00 0 Salary

$ -30.00 0 Sales

$ -63.60 0 Liabilities

$ -20.00 0 MasterCard

$ 200.00 0 Mortgage:Principal

$ -243.60 0 Tithe

---------------- ---------------- ---------

$ -243.60 0

The first column shows the outstanding balance, the second column shows the “cleared”
balance.

2.2.4 Using the Windows Command-Line

Using ledger under the windows command shell has one significant limitation. CMD.EXE
is limited to standard ASCII characters and as such cannot display any currency symbols
other than dollar signs ‘$’.

7

3 Principles of Accounting with Ledger

3.1 Accounting with Ledger

Accounting is simply tracking your money. It can range from nothing, and just waiting for
automatic overdraft protection to kick in, or not, to a full-blown double-entry accounting
system. Ledger accomplishes the latter. With ledger you can handle your personal finances
or your business’s. Double-entry accounting scales.

3.2 Stating where money goes

Accountants will talk of “credits” and “debits”, but the meaning is often different from the
layman’s understanding. To avoid confusion, Ledger uses only subtractions and additions,
although the underlying intent is the same as standard accounting principles.

Recall that every posting will involve two or more accounts. Money is transferred from
one or more accounts to one or more other accounts. To record the posting, an amount is
subtracted from the source accounts, and added to the target accounts.

In order to write a Ledger transaction correctly, you must determine where the money
comes from and where it goes to. For example, when you are paid a salary, you must add
money to your bank account and also subtract it from an income account:

9/29 My Employer

Assets:Checking $500.00

Income:Salary $-500.00

Why is the Income a negative figure? When you look at the balance totals for your
ledger, you may be surprised to see that Expenses are a positive figure, and Income is a
negative figure. It may take some getting used to, but to properly use a general ledger you
must think in terms of how money moves. Rather than Ledger “fixing” the minus signs,
let’s understand why they are there.

When you earn money, the money has to come from somewhere. Let’s call that some-
where “society”. In order for society to give you an income, you must take money away
(withdraw) from society in order to put it into (make a payment to) your bank. When
you then spend that money, it leaves your bank account (a withdrawal) and goes back to
society (a payment). This is why Income will appear negative—it reflects the money you
have drawn from society—and why Expenses will be positive—it is the amount you’ve given
back. These additions and subtractions will always cancel each other out in the end, because
you don’t have the ability to create new money: it must always come from somewhere, and
in the end must always leave. This is the beginning of economy, after which the explanation
gets terribly difficult.

Based on that explanation, here’s another way to look at your balance report: every
negative figure means that that account or person or place has less money now than when
you started your ledger; and every positive figure means that that account or person or
place has more money now than when you started your ledger. Make sense?

3.3 Assets and Liabilities

Assets are money that you have, and Liabilities are money that you owe. “Liabilities” is
just a more inclusive name for Debts.

Chapter 3: Principles of Accounting with Ledger 8

An Asset is typically increased by transferring money from an Income account, such as
when you get paid. Here is a typical transaction:

2004/09/29 My Employer

Assets:Checking $500.00

Income:Salary

Money, here, comes from an Income account belonging to ‘My Employer’, and is trans-
ferred to your checking account. The money is now yours, which makes it an Asset.

Liabilities track money owed to others. This can happen when you borrow money to buy
something, or if you owe someone money. Here is an example of increasing a MasterCard
liability by spending money with it:

2004/09/30 Restaurant

Expenses:Dining $25.00

Liabilities:MasterCard

The Dining account balance now shows $25 spent on Dining, and a corresponding $25
owed on the MasterCard—and therefore shown as $-25.00. The MasterCard liability shows
up as negative because it offsets the value of your assets.

The combined total of your Assets and Liabilities is your net worth. So to see your
current net worth, use this command:

$ ledger balance ^assets ^liabilities

$500.00 Assets:Checking

$-25.00 Liabilities:MasterCard

$475.00

In a similar vein, your Income accounts show up negative, because they transfer money
from an account in order to increase your assets. Your Expenses show up positive because
that is where the money went to. The combined total of Income and Expenses is your cash
flow. A positive cash flow means you are spending more than you make, since income is
always a negative figure. To see your current cash flow, use this command:

$ ledger balance ^income ^expenses

$25.00 Expenses:Dining

$-500.00 Income:Salary

$-475.00

Another common question to ask of your expenses is: How much do I spend each month
on X? Ledger provides a simple way of displaying monthly totals for any account. Here is
an example that summarizes your monthly automobile expenses:

$ ledger -M register -f drewr3.dat expenses:auto

11-Jan-01 - 11-Jan-31 Expenses:Auto $ 5,500.00 $ 5,500.00

This assumes, of course, that you use account names like ‘Expenses:Auto:Gas’ and
‘Expenses:Auto:Repair’.

3.3.1 Tracking reimbursable expenses

Sometimes you will want to spend money on behalf of someone else, which will eventually
get repaid. Since the money is still yours, it is really an asset. And since the expenditure
was for someone else, you don’t want it contaminating your Expenses reports. You will
need to keep an account for tracking reimbursements.

Chapter 3: Principles of Accounting with Ledger 9

This is fairly easy to do in ledger. When spending the money, spend it to your As-
sets:Reimbursements, using a different account for each person or business that you spend
money for. For example:

2004/09/29 Circuit City

Assets:Reimbursements:Company XYZ $100.00

Liabilities:MasterCard

This shows $100.00 spent on a MasterCard at Circuit City, with the expense was made
on behalf of Company XYZ. Later, when Company XYZ pays the amount back, the money
will transfer from that reimbursement account back to a regular asset account:

2004/09/29 Company XYZ

Assets:Checking $100.00

Assets:Reimbursements:Company XYZ

This deposits the money owed from Company XYZ into a checking account, presumably
because they paid the amount back with a check.

But what to do if you run your own business, and you want to keep track of expenses
made on your own behalf, while still tracking everything in a single ledger file? This is
more complex, because you need to track two separate things: 1) The fact that the money
should be reimbursed to you, and 2) What the expense account was, so that you can later
determine where your company is spending its money.

This kind of posting is best handled with mirrored postings in two different files, one for
your personal accounts, and one for your company accounts. But keeping them in one file
involves the same kinds of postings, so those are what is shown here. First, the personal
transaction, which shows the need for reimbursement:

2004/09/29 Circuit City

Assets:Reimbursements:Company XYZ $100.00

Liabilities:MasterCard

This is the same as above, except that you own Company XYZ, and are keeping track
of its expenses in the same ledger file. This transaction should be immediately followed by
an equivalent transaction, which shows the kind of expense, and also notes the fact that
$100.00 is now payable to you:

2004/09/29 Circuit City

Company XYZ:Expenses:Computer:Software $100.00

Company XYZ:Accounts Payable:Your Name

This second transaction shows that Company XYZ has just spent $100.00 on software,
and that this $100.00 came from Your Name, which must be paid back.

These two transactions can also be merged, to make things a little clearer. Note that all
amounts must be specified now:

2004/09/29 Circuit City

Assets:Reimbursements:Company XYZ $100.00

Liabilities:MasterCard $-100.00

Company XYZ:Expenses:Computer:Software $100.00

Company XYZ:Accounts Payable:Your Name $-100.00

To “pay back” the reimbursement, just reverse the order of everything, except this time
drawing the money from a company asset, paying it to accounts payable, and then drawing
it again from the reimbursement account, and paying it to your personal asset account. It’s
easier shown than said:

2004/10/15 Company XYZ

Chapter 3: Principles of Accounting with Ledger 10

Assets:Checking $100.00

Assets:Reimbursements:Company XYZ $-100.00

Company XYZ:Accounts Payable:Your Name $100.00

Company XYZ:Assets:Checking $-100.00

And now the reimbursements account is paid off, accounts payable is paid off, and $100.00
has been effectively transferred from the company’s checking account to your personal check-
ing account. The money simply “waited”—in both ‘Assets:Reimbursements:Company
XYZ’, and ‘Company XYZ:Accounts Payable:Your Name’—until such time as it could be paid
off.

The value of tracking expenses from both sides like that is that you do not contaminate
your personal expense report with expenses made on behalf of others, while at the same
time making it possible to generate accurate reports of your company’s expenditures. It is
more verbose than just paying for things with your personal assets, but it gives you a very
accurate information trail.

The advantage to keep these doubled transactions together is that they always stay in
sync. The advantage to keeping them apart is that it clarifies the transfer’s point of view.
To keep the postings in separate files, just separate the two transactions that were joined
above. For example, for both the expense and the pay-back shown above, the following four
transactions would be created. Two in your personal ledger file:

2004/09/29 Circuit City

Assets:Reimbursements:Company XYZ $100.00

Liabilities:MasterCard $-100.00

2004/10/15 Company XYZ

Assets:Checking $100.00

Assets:Reimbursements:Company XYZ $-100.00

And two in your company ledger file:

apply account Company XYZ

2004/09/29 Circuit City

Expenses:Computer:Software $100.00

Accounts Payable:Your Name $-100.00

2004/10/15 Company XYZ

Accounts Payable:Your Name $100.00

Assets:Checking $-100.00

end apply account

(Note: The apply account above means that all accounts mentioned in the file are
children of that account. In this case it means that all activity in the file relates to Company
XYZ).

After creating these transactions, you will always know that $100.00 was spent using
your MasterCard on behalf of Company XYZ, and that Company XYZ spent the money
on computer software and paid it back about two weeks later.

$ ledger balance --no-total

$100.00 Assets:Checking

0 Company XYZ

$-100.00 Assets:Checking

$100.00 Expenses:Computer:Software

$-100.00 Liabilities:MasterCard

Chapter 3: Principles of Accounting with Ledger 11

3.4 Commodities and Currencies

Ledger makes no assumptions about the commodities you use; it only requires that you
specify a commodity. The commodity may be any non-numeric string that does not contain
a period, comma, forward slash or at-sign. It may appear before or after the amount,
although it is assumed that symbols appearing before the amount refer to currencies, while
non-joined symbols appearing after the amount refer to commodities. Here are some valid
currency and commodity specifiers:

$20.00 ; currency: twenty US dollars

40 AAPL ; commodity: 40 shares of Apple stock

60 DM ; currency: 60 Deutsche Mark

£50 ; currency: 50 British pounds

50 EUR ; currency: 50 Euros (or use appropriate symbol)

Ledger will examine the first use of any commodity to determine how that commodity
should be printed on reports. It pays attention to whether the name of commodity was
separated from the amount, whether it came before or after, the precision used in specifying
the amount, whether thousand marks were used, etc. This is done so that printing the
commodity looks the same as the way you use it.

An account may contain multiple commodities, in which case it will have separate totals
for each. For example, if your brokerage account contains both cash, gold, and several stock
quantities, the balance might look like:

$200.00

100.00 AU

AAPL 40

BORL 100

FEQTX 50 Assets:Brokerage

This balance report shows how much of each commodity is in your brokerage account.

Sometimes, you will want to know the current street value of your balance, and not the
commodity totals. For this to happen, you must specify what the current price is for each
commodity. The price can be any commodity, in which case the balance will be computed
in terms of that commodity. The usual way to specify prices is with a price history file,
which might look like this:

P 2004/06/21 02:18:01 FEQTX $22.49

P 2004/06/21 02:18:01 BORL $6.20

P 2004/06/21 02:18:02 AAPL $32.91

P 2004/06/21 02:18:02 AU $400.00

Specify the price history to use with the --price-db FILE option, with the --market

(-V) option to report in terms of current market value:
$ ledger --price-db prices.db -V balance brokerage

The balance for your brokerage account will be reported in US dollars, since the prices
database uses that currency.

$40880.00 Assets:Brokerage

You can convert from any commodity to any other commodity. Let’s say you had $5000
in your checking account, and for whatever reason you wanted to know how many ounces
of gold that would buy, in terms of the current price of gold:

$ ledger -X AU balance checking

The result of this command might be:
12.50 AU Assets:Checking

Chapter 3: Principles of Accounting with Ledger 12

3.4.1 Commodity price histories

Whenever a commodity is purchased using a different commodity (such as a share of com-
mon stock using dollars), it establishes a price for that commodity on that day. It is also
possible, by recording price details in a ledger file, to specify other prices for commodities
at any given time. Such price transactions might look like those below:

P 2004/06/21 02:17:58 TWCUX $27.76

P 2004/06/21 02:17:59 AGTHX $25.41

P 2004/06/21 02:18:00 OPTFX $39.31

P 2004/06/21 02:18:01 FEQTX $22.49

P 2004/06/21 02:18:02 AAPL $32.91

By default, ledger will not consider commodity prices when generating its various reports.
It will always report balances in terms of the commodity total, rather than the current
value of those commodities. To enable pricing reports, use one of the commodity reporting
options.

3.4.2 Commodity equivalences

Sometimes a commodity has several forms which are all equivalent. An example of this is
time. Whether tracked in terms of minutes, hours or days, it should be possible to convert
between the various forms. Doing this requires the use of commodity equivalences.

For example, you might have the following two postings, one which transfers an hour
of time into a ‘Billable’ account, and another which decreases the same account by ten
minutes. The resulting report will indicate that fifty minutes remain:

2005/10/01 Work done for company

Billable:Client 1h

Project:XYZ

2005/10/02 Return ten minutes to the project

Project:XYZ 10m

Billable:Client

Reporting the balance for this ledger file produces:
$ ledger --no-total balance Billable Project

50.0m Billable:Client

-50.0m Project:XYZ

This example works because ledger already knows how to handle seconds, minutes and
hours, as part of its time tracking support. Defining other equivalences is simple. The
following is an example that creates data equivalences, helpful for tracking bytes, kilobytes,
megabytes, and more:

C 1.00 Kb = 1024 b

C 1.00 Mb = 1024 Kb

C 1.00 Gb = 1024 Mb

C 1.00 Tb = 1024 Gb

Each of these definitions correlates a commodity (such as ‘Kb’) and a default precision,
with a certain quantity of another commodity. In the above example, kilobytes are reported
with two decimal places of precision and each kilobyte is equal to 1024 bytes.

Equivalence chains can be as long as desired. Whenever a commodity would report as
a decimal amount (less than ‘1.00’), the next smallest commodity is used. If a commodity
could be reported in terms of a higher commodity without resulting to a partial fraction,
then the larger commodity is used.

Chapter 3: Principles of Accounting with Ledger 13

3.5 Accounts and Inventories

Since Ledger’s accounts and commodity system is so flexible, you can have accounts that
don’t really exist, and use commodities that no one else recognizes. For example, let’s say
you are buying and selling various items in EverQuest, and want to keep track of them
using a ledger. Just add items of whatever quantity you wish into your EverQuest account:

9/29 Get some stuff at the Inn

Places:Black's Tavern -3 Apples

Places:Black's Tavern -5 Steaks

EverQuest:Inventory

Now your EverQuest:Inventory has 3 apples and 5 steaks in it. The amounts are negative,
because you are taking from Black’s Tavern in order to add to your Inventory account. Note
that you don’t have to use ‘Places:Black's Tavern’ as the source account. You could use
‘EverQuest:System’ to represent the fact that you acquired them online. The only purpose
for choosing one kind of source account over another is to generate more informative reports
later on. The more you know, the better the analysis you can perform.

If you later sell some of these items to another player, the transaction would look like:

10/2 Sturm Brightblade

EverQuest:Inventory -2 Steaks

EverQuest:Inventory 15 Gold

Now you’ve turned 2 steaks into 15 gold, courtesy of your customer, Sturm Brightblade.

$ ledger balance EverQuest

3 Apples

15 Gold

3 Steaks EverQuest:Inventory

3.6 Understanding Equity

The most confusing transaction in any ledger will be your equity account—because starting
balances can’t come out of nowhere.

When you first start your ledger, you will likely already have money in some of your
accounts. Let’s say there’s $100 in your checking account; then add a transaction to your
ledger to reflect this amount. Where will the money come from? The answer: your equity.

10/2 Opening Balance

Assets:Checking $100.00

Equity:Opening Balances

But what is equity? You may have heard of equity when people talked about house
mortgages, as “the part of the house that you own”. Basically, equity is like the value of
something. If you own a car worth $5000, then you have $5000 in equity in that car. In
order to turn that car (a commodity) into a cash flow, or a credit to your bank account,
you will have to debit the equity by selling it.

When you start a ledger, you probably already have a net worth. Your net worth is
your current equity. By transferring the money in the ledger from your equity to your bank
accounts, you are crediting the ledger account based on your prior equity. That is why,
when you look at the balance report, you will see a large negative number for Equity that
never changes: Because that is what you were worth (what you debited from yourself in
order to start the ledger) before the money started moving around. If the total positive

Chapter 3: Principles of Accounting with Ledger 14

value of your assets is greater than the absolute value of your starting equity, it means you
are making money.

Clear as mud? Keep thinking about it. Until you figure it out, put not Equity at the
end of your balance command, to remove the confusing figure from the total.

3.7 Dealing with Petty Cash

Something that stops many people from keeping a ledger at all is the insanity of tracking
small cash expenses. They rarely generate a receipt, and there are often a lot of small
postings, rather than a few large ones, as with checks.

One solution is: don’t bother. Move your spending to a debit card, but in general ignore
cash. Once you withdraw it from the ATM, mark it as already spent to an ‘Expenses:Cash’
category:

2004/03/15 ATM

Expenses:Cash $100.00

Assets:Checking

If at some point you make a large cash expense that you want to track, just move the
amount of the expense from ‘Expenses:Cash’ into the target account:

2004/03/20 Somebody

Expenses:Food $65.00

Expenses:Cash

This way, you can still track large cash expenses, while ignoring all of the smaller ones.

3.8 Working with multiple funds and accounts

There are situations when the accounts you’re tracking are different between your clients
and the financial institutions where money is kept. An example of this is working as the
treasurer for a religious institution. From the secular point of view, you might be working
with three different accounts:

• Checking

• Savings

• Credit Card

From a religious point of view, the community expects to divide its resources into multiple
“funds”, from which it makes purchases or reserves resources for later:

• School fund

• Building fund

• Community fund

The problem with this kind of setup is that, when you spend money, it comes from two
or more places at once: the account and the fund. And yet, the correlation of amounts
between funds and accounts is rarely one-to-one. What if the school fund has ‘$500.00’,
but ‘$400.00’ of that comes from Checking, and ‘$100.00’ from Savings?

Traditional finance packages require that the money reside in only one place. But there
are really two “views” of the data: from the account point of view and from the fund point
of view—yet both sets should reflect the same overall expenses and cash flow. It’s simply
where the money resides that differs.

Chapter 3: Principles of Accounting with Ledger 15

This situation can be handled in one of two ways. The first is using virtual postings to
represent the fact that money is moving to and from two kind of accounts at the same time:

2004/03/20 Contributions

Assets:Checking $500.00

Income:Donations

2004/03/25 Distribution of donations

[Funds:School] $300.00

[Funds:Building] $200.00

[Assets:Checking] $-500.00

The use of square brackets in the second transaction ensures that the virtual postings
balance to zero. Now money can be spent directly from a fund at the same time as money
is drawn from a physical account:

2004/03/25 Payment for books (paid from Checking)

Expenses:Books $100.00

Assets:Checking $-100.00

(Funds:School) $-100.00

The use of round brackets creates a virtual posting without ensuring a balance to zero.
When reports are generated, by default they’ll appear in terms of the funds. In this case,
you will likely want to mask out your ‘Assets’ account, because otherwise the balance won’t
make much sense:

$ ledger --no-total bal not ^Assets

$100.00 Expenses:Books

$400.00 Funds

$200.00 Building

$200.00 School

$-500.00 Income:Donations

If the --real option is used, the report will be in terms of the real accounts:

$ ledger --real --no-total bal

$400.00 Assets:Checking

$100.00 Expenses:Books

$-500.00 Income:Donations

If more asset accounts are needed as the source of a posting, just list them as you would
normally, for example:

2004/03/25 Payment for books (paid from Checking)

Expenses:Books $100.00

Assets:Checking $-50.00

Liabilities:Credit Card $-50.00

(Funds:School) $-100.00

The second way of tracking funds is to use transaction codes. In this respect the codes
become like virtual accounts that embrace the entire set of postings. Basically, we are
associating a transaction with a fund by setting its code. Here are two transactions that
deposit money into, and spend money from, the ‘Funds:School’ fund:

2004/03/25 (Funds:School) Donations

Assets:Checking $100.00

Income:Donations

2004/03/25 (Funds:Building) Donations

Assets:Checking $20.00

Income:Donations

Chapter 3: Principles of Accounting with Ledger 16

2004/04/25 (Funds:School) Payment for books

Expenses:Books $50.00

Assets:Checking

Note how the accounts now relate only to the real accounts, and any balance or register
reports will reflect this. That the transactions relate to a particular fund is kept only in the
code.

How does this become a fund report? By using the --payee=code option, you can
generate a register report where the payee for each posting shows the code. Alone, this
is not terribly interesting; but when combined with the --by-payee (-P) option, you will
now see account subtotals for any postings related to a specific fund. So, to see the current
monetary balances of all funds, the command would be:

$ ledger --payee=code -P reg ^Assets

04-Mar-25 Funds:Building Assets:Checking $20.00 $20.00

04-Mar-25 Funds:School Assets:Checking $50.00 $70.00

Or to see a particular fund’s expenses, the ‘School’ fund in this case:
$ ledger --payee=code -P reg ^Expenses and code School

04-Apr-25 Funds:School Expenses:Books $50.00 $50.00

Both approaches yield different kinds of flexibility, depending on how you prefer to think
of your funds: as virtual accounts, or as tags associated with particular transactions. Your
own tastes will decide which is best for your situation.

17

4 Keeping a Journal

The most important part of accounting is keeping a good journal. If you have a good journal,
tools can be written to work whatever mathematical tricks you need to better understand
your spending patterns. Without a good journal, no tool, however smart, can help you.

The Ledger program aims at making journal transactions as simple as possible. Since
it is a command-line tool, it does not provide a user interface for keeping a journal. If you
require a user interface to maintain journal transactions GnuCash is a good alternative.

If you are not using GnuCash, but a text editor to maintain your journal, read on.
Ledger has been designed to make data transactions as simple as possible, by keeping the
journal format easy, and also by automagically determining as much information as possible
based on the nature of your transactions.

For example, you do not need to tell Ledger about the accounts you use. Any time
Ledger sees a posting involving an account it knows nothing about, it will create it1. If
you use a commodity that is new to Ledger, it will create that commodity, and determine
its display characteristics (placement of the symbol before or after the amount, display
precision, etc.) based on how you used the commodity in the posting.

4.1 The Most Basic Entry

Here is the Pacific Bell example from above, given as a Ledger posting, with the addition
of a check number:

9/29 (1023) Pacific Bell

Expenses:Utilities:Phone $23.00

Assets:Checking $-23.00

As you can see, it is very similar to what would be written on paper, minus the computed
balance totals, and adding in account names that work better with Ledger’s scheme of
things. In fact, since Ledger is smart about many things, you don’t need to specify the
balanced amount, if it is the same as the first line:

9/29 (1023) Pacific Bell

Expenses:Utilities:Phone $23.00

Assets:Checking

For this transaction, Ledger will figure out that $-23.00 must come from
‘Assets:Checking’ in order to balance the transaction.

Also note the structure of the account entries. There is an implied hierarchy established
by separating with colons (see Section 4.3 [Structuring your Accounts], page 18).

The format is very flexible and it isn’t necessary that you indent and space out things
exactly as shown. The only requirements are that the start of the transaction (the date
typically) is at the beginning of the first line of the transaction, and the accounts are
indented by at least one space. If you omit the leading spaces in the account lines Ledger
will generate an error. There must be at least two spaces, or a tab, between the amount
and the account. If you do not have adequate separation between the amount and the
account Ledger will give an error and stop calculating.

1 This also means if you misspell an account it will end up getting counted separately from what you
intended. An Emacs major mode ledger-mode (https://github.com/ledger/ledger-mode/) provides
tab completion for automatically filling in account names.

https://github.com/ledger/ledger-mode/

Chapter 4: Keeping a Journal 18

4.2 Starting up

Unless you have recently arrived from another planet, you already have a financial state.
You need to capture that financial state so that Ledger has a starting point.

At some convenient point in time you knew the balances and outstanding obligation of
every financial account you have. Those amounts form the basis of the opening entry for
ledger. For example if you chose the beginning of 2011 as the date to start tracking finances
with ledger, your opening balance entry could look like this:

2011/01/01 * Opening Balance

Assets:Joint Checking $800.14

Assets:Other Checking $63.44

Assets:Savings $2805.54

Assets:Investments:401K:Deferred 100.0000 VIFSX @ $80.5227

Assets:Investments:401K:Matching 50.0000 VIFSX @ $83.7015

Assets:Investments:IRA 250.0000 VTHRX @ $20.5324

Liabilities:Mortgage $-175634.88

Liabilities:Car Loan $-3494.26

Liabilities:Visa -$1762.44

Equity:Opening Balances

There is nothing special about the name “Opening Balances” as the payee of the account
name, anything convenient that you understand will work.

4.3 Structuring your Accounts

There really are no requirements for how you do this, but to preserve your sanity we suggest
some very basic structure to your accounting system.

At the highest level you have five sorts of accounts:

1. Expenses: where money goes,

2. Assets: where money sits,

3. Income: where money comes from,

4. Liabilities: money you owe,

5. Equity: the real value of your property.

Starting the structure off this way will make it simpler for you to get answers to the
questions you really need to ask about your finances.

Beneath these top level accounts you can have any level of detail you desire. For example,
if you want to keep specific track of how much you spend on burgers and fries, you could
have the following:

Expenses:Food:Hamburgers and Fries

4.4 Commenting on your Journal

Comments are generally started using a ‘;’. However, in order to increase compatibility
with other text manipulation programs and methods, four additional comment characters
are valid if used at the beginning of a line: ‘#’, ‘|’, and ‘*’ and ‘%’.

Block comments can be made by use comment ... end comment.
; This is a single line comment,

and this,

% and this,

Chapter 4: Keeping a Journal 19

| and this,

* and this.

comment

This is a block comment with

multiple lines

end comment

There are several forms of comments within a transaction, for example:

; this is a global comment that is not applied to a specific transaction

; it can start with any of the five characters but is not included in the

; output from 'print' or 'output'

2011/12/11 Something Sweet

; German Chocolate Cake

; :Broke Diet:

Expenses:Food $10.00 ; Friends: The gang

Assets:Credit Union:Checking

The first comment is global and Ledger will not attach it to any specific transactions. The
comments within the transaction must all start with ‘;’ and are preserved as part of the
transaction. The ‘:’ indicates meta-data and tags (see Section 5.7 [Metadata], page 34).

4.5 Currency and Commodities

Ledger is agnostic when it comes to how you value your accounts. Dollars, Euros, Pounds,
Francs, Shares etc. are all just “commodities”. Holdings in stocks, bonds, mutual funds
and other financial instruments can be labeled using whatever is convenient for you (stock
ticker symbols are suggested for publicly traded assets).2

For the rest of this manual, we will only use the word “commodities” when referring to
the units on a transaction value.

This is fundamentally different than many common accounting packages, which assume
the same currency throughout all of your accounts. This means if you typically operate
in Euros, but travel to the US and have some expenses, you would have to do the cur-
rency conversion before you made the entry into your financial system. With ledger this
is not required. In the same journal you can have entries in any or all commodities you
actually hold. You can use the reporting capabilities to convert all commodities to a single
commodity for reporting purposes without ever changing the underlying entry.

For example, the following entries reflect transactions made for a business trip to Europe
from the US:

2011/09/23 Cash in Munich

Assets:Cash e50.00
Assets:Checking $-66.00

2011/09/24 Dinner in Munich

Expenses:Business:Travel e35.00
Assets:Cash

This says that $66.00 came out of checking and turned into 50 Euros. The implied
exchange rate was $1.32. Then 35.00 Euros were spent on Dinner in Munich.

2 You can track anything, even time or distance traveled. As long as it cannot be created or destroyed
inside your accounting system.

Chapter 4: Keeping a Journal 20

Running a ledger balance report shows:
$ ledger -f example.dat bal

$-66.00

e15.00 Assets

e15.00 Cash

$-66.00 Checking

e35.00 Expenses:Business:Travel

$-66.00

e50.00

The top two lines show my current assets as $-66.00 in checking (in this very short
example I didn’t establish opening an opening balance for the checking account) and e15.00.
After spending on dinner I have e15.00 in my wallet. The bottom line balances to zero,
but is shown in two lines since we haven’t told ledger to convert commodities.

4.5.1 Naming Commodities

Commodity names can have any character, including white-space. However, if you include
white-space or numeric characters, the commodity name must be enclosed in double quotes
‘"’:

1999/06/09 ! Achat

Actif:SG PEE STK 49.957 "Arcancia Équilibre 454"

Actif:SG PEE STK $-234.90

2000/12/08 ! Achat

Actif:SG PEE STK 215.796 "Arcancia Équilibre 455"

Actif:SG PEE STK $-10742.54

Please note that, for querying quoted commodities, the quotes need to be escaped, as
follows:

$ ledger -f d reg -l 'commodity == "\"Arcancia Équilibre 454\""'

4.5.2 Buying and Selling Stock

Buying stock is a typical example that many will use that involves multiple commodities
in the same transaction. The type of the share (AAPL for Apple Inc.) and the share
purchase price in the currency unit you made the purchase in ($ for AAPL). Yes, the
typical convention is as follows:

2004/05/01 Stock purchase

Assets:Broker 50 AAPL @ $30.00

Expenses:Broker:Commissions $19.95

Assets:Broker $-1,519.95

This assumes you have a brokerage account that is capable of managing both liquid and
commodity assets. Now, on the day of the sale:

2005/08/01 Stock sale

Assets:Broker -50 AAPL {$30.00} @ $50.00

Expenses:Broker:Commissions $19.95

Income:Capital Gains $-1,000.00

Assets:Broker $2,480.05

You can, of course, elide the amount of the last posting. It is there for clarity’s sake.

The ‘{$30.00}’ is a lot price. You can also use a lot date, ‘[2004/05/01]’, or both,
in case you have several lots of the same price/date and your taxation model is based on
longest-held-first.

Chapter 4: Keeping a Journal 21

4.5.3 Fixing Lot Prices

Commodities that you keep in order to sell at a later time have a variable value that
fluctuates with the market prices. Commodities that you consume should not fluctuate in
value, but stay at the lot price they were purchased at. As an extension of “lot pricing”,
you can fix the per-unit price of a commodity.

For example, say you buy 10 gallons of gas at $1.20. In future “value” reports, you don’t
want these gallons reported in terms of today’s price, but rather the price when you bought
it. At the same time, you also want other kinds of commodities—like stocks— reported in
terms of today’s price.

This is supported as follows:

2009/01/01 Shell

Expenses:Gasoline 11 GAL {=$2.299}

Assets:Checking

This transaction actually introduces a new commodity, ‘GAL {=$2.29}’, whose market
value disregards any future changes in the price of gasoline.

If you do not want price fixing, you can specify this same transaction in one of two ways,
both equivalent (note the lack of the equal sign compared to the transaction above):

2009/01/01 Shell

Expenses:Gasoline 11 GAL {$2.299}

Assets:Checking

2009/01/01 Shell

Expenses:Gasoline 11 GAL @ $2.299

Assets:Checking

There is no difference in meaning between these two forms. Why do both exist, you ask?
To support things like this:

2009/01/01 Shell

Expenses:Gasoline 11 GAL {=$2.299} @ $2.30

Assets:Checking

This transaction says that you bought 11 gallons priced at $2.299 per gallon at a
cost to you of $2.30 per gallon. Ledger auto-generates a balance posting in this case to
Equity:Capital Losses to reflect the 1.1 cent difference, which is then balanced by As-
sets:Checking because its amount is null.

4.5.4 Complete control over commodity pricing

Ledger allows you to have very detailed control over how your commodities are valued.
You can fine tune the results given using the --market or --exchange COMMODITY options.
There are now several points of interception; you can specify the valuation method:

1. on a commodity itself,

2. on a posting, via metadata (effect is largely the same as #1),

3. on an xact, which then applies to all postings in that xact,

4. on any posting via an automated transaction,

5. on a per-account basis,

6. on a per-commodity basis,

7. by changing the journal default of market.

Chapter 4: Keeping a Journal 22

Fixated pricing (such as ‘{=$20}’) still plays a role in this scheme. As far as valuation
goes, it’s shorthand for writing ‘((s,d,t -> market($20,d,t)))’.

A valuation function receives three arguments:

source A string identifying the commodity whose price is being asked for (example:
‘EUR’).

date The reference date the price should be relative.

target A string identifying the “target” commodity, or the commodity the returned
price should be in. This argument is null if --market was used instead of
--exchange COMMODITY.

The valuation function should return an amount. If you’ve written your function in
Python, you can return something like ‘Amount("$100")’. If the function returns an explicit
value, that value is always used, regardless of the commodity, the date, or the desired target
commodity. For example,

define myfunc_seven(s, d, t) = 7 EUR

In order to specify a fixed price, but still valuate that price into the target commodity,
use something like this:

define myfunc_five(s, d, t) = market(5 EUR, d, t)

The value directive sets the valuation used for all commodities used in the rest of the
data stream. This is the fallback, if nothing more specific is found.

value myfunc_seven

You can set a specific valuation function on a per-commodity basis. Instead of defining
a function, you can also pass a lambda.

commodity $

value s, d, t -> 6 EUR

Each account can also provide a default valuation function for any commodities trans-
ferred to that account.

account Expenses:Food5

value myfunc_five

The metadata field ‘Value’, if found, overrides the valuation function on a transaction-
wide or per-posting basis.

= @XACT and Food

; Value:: 8 EUR

(Equity) $1

= @POST and Dining

(Expenses:Food9) $1

; Value:: 9 EUR

Lastly, you can specify the valuation function/value for any specific amount using the
‘(())’ commodity annotation.

2012-03-02 KFC

Expenses:Food2 $1 ((2 EUR))

Assets:Cash2

2012-03-03 KFC

Expenses:Food3 $1

; Value:: 3 EUR

Chapter 4: Keeping a Journal 23

Assets:Cash3

2012-03-04 KFC

; Value:: 4 EUR

Expenses:Food4 $1

Assets:Cash4

2012-03-05 KFC

Expenses:Food5 $1

Assets:Cash5

2012-03-06 KFC

Expenses:Food6 $1

Assets:Cash6

2012-03-07 KFC

Expenses:Food7 1 CAD

Assets:Cash7

2012-03-08 XACT

Expenses:Food8 $1

Assets:Cash8

2012-03-09 POST

Expenses:Dining9 $1

Assets:Cash9

$ ledger reg -V food

12-Mar-02 KFC Expenses:Food2 2 EUR 2 EUR

12-Mar-03 KFC Expenses:Food3 3 EUR 5 EUR

12-Mar-04 KFC Expenses:Food4 4 EUR 9 EUR

12-Mar-05 KFC Expenses:Food5 $1 $1

9 EUR

12-Mar-06 KFC Expenses:Food6 $1 $2

9 EUR

12-Mar-07 KFC Expenses:Food7 1 CAD $2

1 CAD

9 EUR

12-Mar-08 XACT Expenses:Food8 $1 $3

1 CAD

9 EUR

4.6 Keeping it Consistent

Sometimes Ledger’s flexibility can lead to difficulties. Using a freeform text editor to enter
transactions makes it easy to keep the data, but also easy to enter accounts or payees
inconsistently or with spelling errors.

In order to combat inconsistency you can define allowable accounts and payees. For
simplicity, create a separate text file and define accounts and payees like

account Expenses

account Expenses:Utilities

Using the --strict option will cause Ledger to complain if any accounts are not previ-
ously defined:

$ ledger bal --strict

Warning: "FinanceData/Master.dat", line 6: Unknown account 'Liabilities:Tithe Owed'

Warning: "FinanceData/Master.dat", line 8: Unknown account 'Liabilities:Tithe Owed'

Chapter 4: Keeping a Journal 24

Warning: "FinanceData/Master.dat", line 15: Unknown account 'Allocation:Equities:Domestic'

If you have a large Ledger register already created use the accounts command to get
started:

$ ledger accounts >> Accounts.dat

You will have to edit this file to add the account directive in front of every line.

4.7 Journal Format

The ledger file format is quite simple, but also very flexible. It supports many options,
though typically the user can ignore most of them. They are summarized below.

4.7.1 Transactions and Comments

The initial character of each line determines what the line means, and how it should be
interpreted. Allowable initial characters are:

NUMBER A line beginning with a number denotes a transaction. It may be followed by any
number of lines, each beginning with white-space, to denote the transaction’s
account postings. The format of the first line is:

DATE[=EDATE] [*|!] [(CODE)] DESC

If ‘*’ appears after the date (with optional effective date), it indicates the
transaction is “cleared”, which can mean whatever the user wants it to mean.
If ‘!’ appears after the date, it indicates the transaction is “pending”; i.e.,
tentatively cleared from the user’s point of view, but not yet actually cleared.
If a CODE appears in parentheses, it may be used to indicate a check number,
or the type of the posting. Following these is the payee, or a description of the
posting.

The format of each following posting is:

ACCOUNT AMOUNT [; NOTE]

The ACCOUNT may be surrounded by parentheses if it is a virtual posting, or
square brackets if it is a virtual posting that must balance. The AMOUNT can be
followed by a per-unit posting cost, by specifying @ AMOUNT, or a complete post-
ing cost with @@ AMOUNT. The NOTE may specify an actual and/or effective date
for the posting by using the syntax [ACTUAL_DATE] or [=EFFECTIVE_DATE] or
[ACTUAL_DATE=EFFECTIVE_DATE] (see Section 5.8 [Virtual postings], page 36).
Lastly, note that the AMOUNT must be preceded by at least two whitespace char-
acters.

P Specifies a historical price for a commodity. These are usually found in a pricing
history file (see the --download (-Q) option). The syntax is:

P DATE SYMBOL PRICE

= An automated transaction. A value expression must appear after the equal
sign.

After this initial line there should be a set of one or more postings, just as if it
were a normal transaction. If the amounts of the postings have no commodity,
they will be applied as multipliers to whichever real posting is matched by the
value expression (see Section 5.22 [Automated Transactions], page 43).

Chapter 4: Keeping a Journal 25

~ A periodic transaction. A period expression must appear after the tilde.

After this initial line there should be a set of one or more postings, just as if it
were a normal transaction.

; # % | * A line beginning with a semicolon, pound, percent, bar or asterisk indicates a
comment, and is ignored. Comments will not be returned in a “print” response.

indented ;

If the semicolon is indented and occurs inside a transaction, it is parsed as a
persistent note for its preceding category. These notes or tags can be used to
augment the reporting and filtering capabilities of Ledger.

4.7.2 Command Directives

beginning of line

Command directives must occur at the beginning of a line. Use of ‘!’ and ‘@’
is deprecated.

account Pre-declare valid account names. This only has an effect if --strict or
--pedantic is used (see below). The account directive supports several
optional sub-directives, if they immediately follow the account directive and if
they begin with whitespace:

account Expenses:Food

note This account is all about the chicken!

alias food

payee ^(KFC|Popeyes)$

check commodity == "$"

assert commodity == "$"

eval print("Hello!")

default

The note sub-directive associates a textual note with the account. This can be
accessed later using the note value expression function in any account context.

The alias sub-directive, which can occur multiple times, allows the alias to
be used in place of the full account name anywhere that account names are
allowed.

The payee sub-directive, which can occur multiple times, provides regexes that
identify the account if that payee is encountered and an account within its
transaction ends in the name "Unknown". Example:

2012-02-27 KFC

Expenses:Unknown $10.00 ; Read now as "Expenses:Food"

Assets:Cash

The check and assert directives warn or raise an error (respectively) if the
given value expression evaluates to false within the context of any posting.

The eval directive evaluates the value expression in the context of the account
at the time of definition. At the moment this has little value.

The default directive specifies that this account should be used as the “bal-
ancing account” for any future transactions that contain only a single posting.

apply account

Sets the root for all accounts following this directive. Ledger supports a hier-
archical tree of accounts. It may be convenient to keep two “root accounts”.

Chapter 4: Keeping a Journal 26

For example you may be tracking your personal finances and your business fi-
nances. In order to keep them separate you could preface all personal accounts
with ‘personal:’ and all business accounts with ‘business:’. You can easily
split out large groups of transactions without manually editing them using the
account directive. For example:

apply account Personal

2011/11/15 Supermarket

Expenses:Groceries $ 50.00

Assets:Checking

Would result in all postings going into ‘Personal:Expenses:Groceries’ and
‘Personal:Assets:Checking’ until an ‘end apply account’ directive was
found.

apply fixed

A fixed block is used to set fixated prices (see Section 5.18 [Fixated prices and
costs], page 41) for a series of transactions. It’s purely a typing saver, for use
when entering many transactions with fixated prices.

Thus, the following:
apply fixed CAD $0.90

2012-04-10 Lunch in Canada

Assets:Wallet -15.50 CAD

Expenses:Food 15.50 CAD

2012-04-11 Second day Dinner in Canada

Assets:Wallet -25.75 CAD

Expenses:Food 25.75 CAD

end apply fixed

is equivalent to this:
2012-04-10 Lunch in Canada

Assets:Wallet -15.50 CAD {=$0.90}

Expenses:Food 15.50 CAD {=$0.90}

2012-04-11 Second day Dinner in Canada

Assets:Wallet -25.75 CAD {=$0.90}

Expenses:Food 25.75 CAD {=$0.90}

alias Define an alias for an account name. If you have a deeply nested tree of accounts,
it may be convenient to define an alias, for example:

alias Dining=Expenses:Entertainment:Dining

alias Checking=Assets:Credit Union:Joint Checking Account

2011/11/28 YummyPalace

Dining $10.00

Checking

The aliases are only in effect for transactions read in after the alias is defined
and are affected by account directives that precede them.

$ ledger bal --no-total ^Exp

$10.00 Expenses:Entertainment:Dining

With the option --recursive-aliases, aliases can refer to other aliases, the
following example produces exactly the same transactions and account names
as the preceding one:

alias Entertainment=Expenses:Entertainment

Chapter 4: Keeping a Journal 27

alias Dining=Entertainment:Dining

alias Checking=Assets:Credit Union:Joint Checking Account

2011/11/30 ChopChop

Dining $10.00

Checking

$ ledger balance --no-total --recursive-aliases ^Exp

$10.00 Expenses:Entertainment:Dining

The option --no-aliases completely disables alias expansion. All accounts
are read verbatim as they are in the ledger file.

assert An assertion can throw an error if a condition is not met during Ledger’s run.
assert <VALUE EXPRESSION BOOLEAN RESULT>

bucket Defines the default account to use for balancing transactions. Normally, each
transaction has at least two postings, which must balance to zero. Ledger al-
lows you to leave one posting with no amount and automatically balance the
transaction in the posting. The bucket allows you to fill in all postings and au-
tomatically generate an additional posting to the bucket account balancing the
transaction. If any transaction is unbalanced, it will automatically be balanced
against the bucket account. The following example sets ‘Assets:Checking’ as
the bucket:

bucket Assets:Checking

2011/01/25 Tom's Used Cars

Expenses:Auto $ 5,500.00

2011/01/27 Book Store

Expenses:Books $20.00

2011/12/01 Sale

Assets:Checking:Business $ 30.00

capture

Directs Ledger to replace any account matching a regex with the given account.
For example:

capture Expenses:Deductible:Medical Medical

Would cause any posting with ‘Medical’ in its name to be replaced with
‘Expenses:Deductible:Medical’.

Ledger will display the mapped payees in print and register reports.

check A check issues a warning if a condition is not met during Ledger’s run.
check <VALUE EXPRESSION BOOLEAN RESULT>

comment Start a block comment, closed by end comment.

commodity

Pre-declare commodity names. This only has an effect if --strict or
--pedantic is used (see below).

commodity $

commodity CAD

The commodity directive supports several optional sub-directives, if they im-
mediately follow the commodity directive and—if they are on successive lines—
begin with whitespace:

Chapter 4: Keeping a Journal 28

commodity $

note American Dollars

format $1,000.00

nomarket

alias USD

default

The note sub-directive associates a textual note with the commodity. At
present this has no value other than documentation.

The format sub-directive gives you a way to tell Ledger how to format this
commodity. In the future, using this directive will disable Ledger’s observa-
tion of other ways that commodity is used, and will provide the “canonical”
representation.

The nomarket sub-directive states that the commodity’s price should never be
auto-downloaded.

The alias sub-directive states that any commodity matching this symbol is to
use the commodity declared in this block.

The default sub-directive marks this as the “default” commodity.

define Allows you to define value expressions for future use. For example:

define var_name=$100

2011/12/01 Test

Expenses (var_name*4)

Assets

The posting will have a cost of $400.

end Closes block commands like apply or comment.

expr Same as eval.

include Include the stated file as if it were part of the current file. The file name can
contain a wildcard (‘*’) to refer to multiple files (e.g. ‘bank/*.ledger’).

payee

The payee directive supports two optional sub-directives, if they immediately
follow the payee directive and—if it is on a successive line—begins with white-
space:

payee KFC

alias KENTUCKY FRIED CHICKEN

uuid 2a2e21d434356f886c84371eebac6e44f1337fda

The alias sub-directive provides a regex which, if it matches a parsed payee,
the declared payee name is substituted:

2012-02-27 KENTUCKY FRIED CHICKEN ; will be read as being 'KFC'

The uuid sub-directive specifies that a transaction with exactly the uuid given
should have the declared payee name substituted:

2014-05-13 UNHELPFUL PAYEE ; will be read as being 'KFC'

; UUID: 2a2e21d434356f886c84371eebac6e44f1337fda

Ledger will display the mapped payees in print and register reports.

Chapter 4: Keeping a Journal 29

apply tag Allows you to designate a block of transactions and assign the same tag to all.
Tags can have values and may be nested.

apply tag hastag

apply tag nestedtag: true

2011/01/25 Tom's Used Cars

Expenses:Auto $ 5,500.00

; :nobudget:

Assets:Checking

2011/01/27 Book Store

Expenses:Books $20.00

Liabilities:MasterCard

end apply tag

2011/12/01 Sale

Assets:Checking:Business $ 30.00

Income:Sales

end apply tag

is the equivalent of:

2011/01/25 Tom's Used Cars

; :hastag:

; nestedtag: true

Expenses:Auto $ 5,500.00

; :nobudget:

Assets:Checking

2011/01/27 Book Store

; :hastag:

; nestedtag: true

Expenses:Books $20.00

Liabilities:MasterCard

2011/12/01 Sale

; :hastag:

Assets:Checking:Business $ 30.00

Income:Sales

tag Pre-declares tag names. This only has an effect if --strict or --pedantic is
used (see below).

tag Receipt

tag CSV

The tag directive supports two optional sub-directives, if they immediately
follow the tag directive and—if on a successive line—begin with whitespace:

tag Receipt

check value =~ /pattern/

assert value != "foobar"

The check and assert sub-directives warn or error (respectively) if the given
value expression evaluates to false within the context of any use of the related
tag. In such a context, “value” is bound to the value of the tag (which may
be something else but a string if typed metadata is used!). Such checks or
assertions are not called if no value is given.

Chapter 4: Keeping a Journal 30

test This is a synonym for comment and must be closed by an end tag.

year Denotes the year used for all subsequent transactions that give a date without
a year. The year should appear immediately after the directive, for example:
year 2004. This is useful at the beginning of a file, to specify the year for that
file. If all transactions specify a year, however, this command has no effect.

The following single letter commands may be at the beginning of a line alone, for back-
wards compatibility with older Ledger versions.

A See [bucket], page 27.

Y See [year], page 30.

N SYMBOL Indicates that pricing information is to be ignored for a given symbol, nor will
quotes ever be downloaded for that symbol. Useful with a home currency, such
as the dollar ‘$’. It is recommended that these pricing options be set in the price
database file, which defaults to ~/.pricedb. The syntax for this command is:

N SYMBOL

D AMOUNT Specifies the default commodity to use, by specifying an amount in the expected
format. The xact command will use this commodity as the default when none
other can be determined. This command may be used multiple times, to set
the default flags for different commodities; whichever is seen last is used as the
default commodity. For example, to set US dollars as the default commodity,
while also setting the thousands flag and decimal flag for that commodity, use:

D $1,000.00

C AMOUNT1 = AMOUNT2

Specifies a commodity conversion, where the first amount is given to be equiv-
alent to the second amount. The first amount should use the decimal precision
desired during reporting:

C 1.00 Kb = 1024 bytes

I, i, O, o, b, h

These four relate to timeclock support, which permits Ledger to read timelog
files. See timeclock’s documentation for more info on the syntax of its timelog
files.

4.8 Converting from other formats

There are numerous tools to help convert various formats to a Ledger file. Most banks will
generate a comma separated values file that can easily be parsed into Ledger format using
one of those tools. Some of the most popular tools are:

• ledger convert download.csv

• hledger -f checking.csv print

• icsv2ledger (https://github.com/quentinsf/icsv2ledger)

• csvToLedger (https://github.com/tazzben/csvToLedger)

• CSV2Ledger (https://launchpad.net/csv2ledger)

Directly pulling information from banks is outside the scope of Ledger’s function.

https://github.com/quentinsf/icsv2ledger
https://github.com/tazzben/csvToLedger
https://launchpad.net/csv2ledger

Chapter 4: Keeping a Journal 31

4.9 Archiving Previous Years

After a while, your journal can get to be pretty large. While this will not slow down
Ledger—it’s designed to process journals very quickly—things can start to feel “messy”;
and it’s a universal complaint that when finances feel messy, people avoid them.

Thus, archiving the data from previous years into their own files can offer a sense of
completion, and freedom from the past. But how to best accomplish this with the ledger
program? There are two commands that make it very simple: print, and equity.

Let’s take an example file, with data ranging from year 2000 until 2004. We want to
archive years 2000 and 2001 to their own file, leaving 2002–2004 in the current file. So, use
print to output all the earlier transactions to a file called ledger-old.dat:

$ ledger -f ledger.dat -b 2000 -e 2002 print > ledger-old.dat

Note that -e limits output to transactions before the date specified.

To delete older data from the current ledger file, use print again, this time specifying
year 2002 as the starting date:

$ ledger -f ledger.dat -b 2002 print > x

$ mv x ledger.dat

However, now the current file contains only postings from 2002 onward, which will not
yield accurate present-day balances, because the net income from previous years is no longer
being tallied. To compensate for this, we must append an equity report for the old ledger
at the beginning of the new one:

$ ledger -f ledger-old.dat equity > equity.dat

$ cat equity.dat ledger.dat > x

$ mv x ledger.dat

$ rm equity.dat

Now the balances reported from ledger.dat are identical to what they were before the
data was split.

How often should you split your ledger? You never need to, if you don’t want to. Even
eighty years of data will not slow down ledger much, and that’s just using present day
hardware! Or, you can keep the previous and current year in one file, and each year before
that in its own file. It’s really up to you, and how you want to organize your finances. For
those who also keep an accurate paper trail, it might be useful to archive the older years to
their own files, then burn those files to a CD to keep with the paper records—along with
any electronic statements received during the year. In the arena of organization, just keep
in mind this maxim: Do whatever keeps you doing it.

32

5 Transactions

5.1 Basic format

The most basic form of transaction is:

2012-03-10 KFC

Expenses:Food $20.00

Assets:Cash $-20.00

This transaction has a date, a payee or description, a target account (the first posting),
and a source account (the second posting). Each posting specifies what action is taken
related to that account.

A transaction can have any number of postings:

2012-03-10 KFC

Expenses:Food $20.00

Assets:Cash $-10.00

Liabilities:Credit $-10.00

5.2 Eliding amounts

The first thing you can do to make things easier is elide amounts. That is, if exactly one
posting has no amount specified, Ledger will infer the inverse of the other postings’ amounts:

2012-03-10 KFC

Expenses:Food $20.00

Assets:Cash $-10.00

Liabilities:Credit ; same as specifying $-10

If the other postings use multiple commodities, Ledger will copy the empty posting N times
and fill in the negated values of the various commodities:

2012-03-10 KFC

Expenses:Food $20.00

Expenses:Tips $2.00

Assets:Cash EUR -10.00

Assets:Cash GBP -10.00

Liabilities:Credit

This transaction is identical to writing:

2012-03-10 KFC

Expenses:Food $20.00

Expenses:Tips $2.00

Assets:Cash EUR -10.00

Assets:Cash GBP -10.00

Liabilities:Credit $-22.00

Liabilities:Credit EUR 10.00

Liabilities:Credit GBP 10.00

5.3 Auxiliary dates

You can associate a second date with a transaction by following the primary date with an
equals sign:

2012-03-10=2012-03-08 KFC

Expenses:Food $20.00

Assets:Cash $-20.00

Chapter 5: Transactions 33

What this auxiliary date means is entirely up to you. The only use Ledger has for
it is that if you specify --aux-date (or --effective), then all reports and calculations
(including pricing) will use the auxiliary date as if it were the primary date.

Note that the --aux-date option is an alias for --effective; for more details on effective
dates see Section 5.22.7 [Effective Dates], page 46.

5.4 Codes

A transaction can have a textual “code”. This has no meaning and is only displayed by the
print command. Checking accounts often use codes like DEP, XFER, etc., as well as check
numbers. This is to give you a place to put those codes:

2012-03-10 (#100) KFC

Expenses:Food $20.00

Assets:Checking

5.5 Transaction state

A transaction can have a “state”: cleared, pending, or uncleared. The default is uncleared.
To mark a transaction cleared, put an asterisk ‘*’ after the date, before the code or payee:

2012-03-10 * KFC

Expenses:Food $20.00

Assets:Cash

To mark it pending, use a ‘!’:

2012-03-10 ! KFC

Expenses:Food $20.00

Assets:Cash

What these mean is entirely up to you. The --cleared option limits reports to only
cleared items, while --uncleared shows both uncleared and pending items, and --pending

shows only pending items.

I use cleared to mean that I’ve reconciled the transaction with my bank statement, and
pending to mean that I’m in the middle of a reconciliation.

When you clear a transaction, that’s really just shorthand for clearing all of its postings.
That is:

2012-03-10 * KFC

Expenses:Food $20.00

Assets:Cash

Is the same as writing:

2012-03-10 KFC

* Expenses:Food $20.00

* Assets:Cash

You can mark individual postings as cleared or pending, in case one “side” of the transaction
has cleared, but the other hasn’t yet:

2012-03-10 KFC

Liabilities:Credit $100.00

* Assets:Checking

Chapter 5: Transactions 34

5.6 Transaction notes

After the payee, and after at least one tab or two spaces (or a space and a tab), which
Ledger calls a “hard separator”, you may introduce a note about the transaction using the
‘;’ character:

2012-03-10 * KFC ; yum, chicken...

Expenses:Food $20.00

Assets:Cash

Notes can also appear on the next line, so long as that line begins with whitespace:

2012-03-10 * KFC ; yum, chicken...

; and more notes...

Expenses:Food $20.00

Assets:Cash

2012-03-10 * KFC

; just these notes...

Expenses:Food $20.00

Assets:Cash

A transaction’s note is shared by all its postings. This becomes significant when querying
for metadata (see below). To specify that a note belongs only to one posting, place it after
a hard separator after the amount, or on its own line preceded by whitespace:

2012-03-10 * KFC

Expenses:Food $20.00 ; posting #1 note

Assets:Cash

; posting #2 note, extra indentation is optional

5.7 Metadata

One of Ledger’s more powerful features is the ability to associate typed metadata with
postings and transactions (by which I mean all of a transaction’s postings). This metadata
can be queried, displayed, and used in calculations.

The are two forms of metadata: plain tags, and tag/value pairs.

5.7.1 Metadata tags

To tag an item, put any word not containing whitespace between two colons inside a com-
ment:

2012-03-10 * KFC

Expenses:Food $20.00

Assets:Cash

; :TAG:

You can gang up multiple tags by sharing colons:

2012-03-10 * KFC

Expenses:Food $20.00

Assets:Cash

; :TAG1:TAG2:TAG3:

5.7.2 Metadata values

To associate a value with a tag, use the syntax “Key: Value”, where the value can be any
string of characters. Whitespace is needed after the colon, and cannot appear in the Key:

2012-03-10 * KFC

Chapter 5: Transactions 35

Expenses:Food $20.00

Assets:Cash

; MyTag: This is just a bogus value for MyTag

5.7.3 Typed metadata

If a metadata tag ends in ::, its value will be parsed as a value expression and stored
internally as a value rather than as a string. For example, although I can specify a date
textually like so:

2012-03-10 * KFC

Expenses:Food $20.00

Assets:Cash

; AuxDate: 2012/02/30

This date is just a string, and won’t be parsed as a date unless its value is used in a date-
context (at which time the string is parsed into a date automatically every time it is needed
as a date). If on the other hand I write this:

2012-03-10 * KFC

Expenses:Food $20.00

Assets:Cash

; AuxDate:: [2012/02/30]

Then it is parsed as a date only once, and during parsing of the journal file, which would
let me know right away that it is an invalid date.

5.7.4 Payee metadata

“Payee” is a special metadata field. If set on a posting, it will be used as the payee name
for that posting. This affects the register report, the payees report, and the --by-payee
option.

This is useful when for example you deposit 4 checks at a time to the bank. On the
bank statement, there is just one amount ‘$400’, but you can specify from whom each check
came, as shown by example below:

2010-06-17 Sample

Assets:Bank $400.00

Income:Check1 $-100.00 ; Payee: Person One

Income:Check2 $-100.00 ; Payee: Person Two

Income:Check3 $-100.00 ; Payee: Person Three

Income:Check4 $-100.00 ; Payee: Person Four

When reporting with

$ ledger reg

it appears as:

10-Jun-17 Sample Assets:Bank $400.00 $400.00

Person One Income:Check1 $-100.00 $300.00

Person Two Income:Check2 $-100.00 $200.00

Person Three Income:Check3 $-100.00 $100.00

Person Four Income:Check4 $-100.00 0

This shows that they are all in the same transaction (which is why the date is not
repeated), but they have different payees now.

If using the --strict or --pedantic options, you must declare this tag to avoid warnings
and errors.

Chapter 5: Transactions 36

5.8 Virtual postings

Ordinarily, the amounts of all postings in a transaction must balance to zero. This is non-
negotiable. It’s what double-entry accounting is all about! But there are some tricks up
Ledger’s sleeve...

You can use virtual accounts to transfer amounts to an account on the sly, bypassing
the balancing requirement. The trick is that these postings are not considered “real”, and
can be removed from all reports using --real.

To specify a virtual account, surround the account name with parentheses:
2012-03-10 * KFC

Expenses:Food $20.00

Assets:Cash

(Budget:Food) $-20.00

If you want, you can state that virtual postings should balance against one or more other
virtual postings by using brackets (which look “harder”) rather than parentheses:

2012-03-10 * KFC

Expenses:Food $20.00

Assets:Cash

[Budget:Food] $-20.00

[Equity:Budgets] $20.00

5.9 Expression amounts

An amount is a numerical figure with a commodity, but it can also be any value expression.
To indicate this, surround the amount expression with parentheses:

2012-03-10 * KFC

Expenses:Food ($10.00 + $20.00) ; Ledger adds it up for you

Assets:Cash

5.10 Balance verification

If at the end of a posting’s amount (and after the cost too, if there is one) there is an equals
sign, then Ledger will verify that the total value for that account as of that posting matches
the amount specified. See --permissive option to relax the balance assertions checks.

There are two forms of this features: balance assertions, and balance assignments. Note
that both of these are processed while parsing the given ledger files. Hence the order in
which these are evaluated is the order in which they appear in the ledger file. The date
or effective date of the transactions and postings that contain the balance assertions or
balance assignments is therefore irrelevant for the the evaluation of the balance assertions
and balance assignments. This may be confusing to people for whom a date order is more
intuitive.

5.10.1 Balance assertions

A balance assertion has this general form:
2012-03-10 KFC

Expenses:Food $20.00

Assets:Cash $-20.00 = $500.00

This simply asserts that after subtracting $20.00 from Assets:Cash, that the resulting
total matches $500.00. If not, it is an error.

Chapter 5: Transactions 37

The assertion has an effect only on the specified commodity. If an account has multiple
commodities, then only the one asserted is verified:

2012-03-10 KFC New York

Expenses:Food $20.00

Assets:Cash $-20.00 = $500.00

2012-03-11 KFC Montreal

Expenses:Food 15.00 CAD

Assets:Cash -15.00 CAD = $500.00

In this case, the amount in USD of cash (which has not changed) is validated. Nothing
is asserted about the current amount of Canadian dollars in ‘Asset:Cash’.

5.10.1.1 Special assertion value 0

The only value that can be asserted without a commodity is ‘0’. This results in a cross-
commodities assertion, which makes it possible to assert that an account is totally empty.

2012-03-09 Fill Wallet

Revenue $20.00

Revenue 15.00 CAD

Assets:Cash

2012-03-10 KFC New York

Expenses:Food $20.00

Assets:Cash $-20.00

2012-03-11 KFC Montreal

Expenses:Food 15.00 CAD

Assets:Cash -15.00 CAD = 0

The last transaction will assert that we are out of cash of any sort.

5.10.2 Balance assignments

A balance assignment has this form:
2012-03-10 KFC

Expenses:Food $20.00

Assets:Cash = $500.00

This sets the amount of the second posting to whatever it would need to be for the total
in ‘Assets:Cash’ to be $500.00 after the posting. If the resulting amount is not $-20.00 in
this case, it is an error.

5.10.3 Resetting a balance

Say your book-keeping has gotten a bit out of date, and your Ledger balance no longer
matches your bank balance. You can create an adjustment transaction using balance as-
signments:

2012-03-10 Adjustment

Assets:Cash = $500.00

Equity:Adjustments

Since the second posting is also null, its value will become the inverse of whatever amount
is generated for the first posting.

This is the only time in ledger when more than one posting’s amount may be empty—and
then only because it’s not truly empty, it is indirectly provided by the balance assignment’s
value.

Chapter 5: Transactions 38

5.10.4 Balancing transactions

As a consequence of all the above, consider the following transaction:

2012-03-10 My Broker

[Assets:Brokerage] = 10 AAPL

What this says is: set the amount of the posting to whatever value is needed so that
‘Assets:Brokerage’ contains 10 AAPL. Then, because this posting must balance, ensure
that its value is zero. This can only be true if Assets:Brokerage does indeed contain 10
AAPL at that point in the input file.

A balanced virtual transaction is used simply to indicate to Ledger that this is not a
“real” transaction. It won’t appear in any reports anyway (unless you use a register report
with --empty).

5.11 Posting cost

When you transfer a commodity from one account to another, sometimes it gets transformed
during the transaction. This happens when you spend money on gas, for example, which
transforms dollars into gallons of gasoline, or dollars into stocks in a company.

In those cases, Ledger will remember the “cost” of that transaction for you, and can use
it during reporting in various ways. Here’s an example of a stock purchase:

2012-03-10 My Broker

Assets:Brokerage 10 AAPL

Assets:Brokerage:Cash $-500.00

This is different from transferring 10 AAPL shares from one account to another, in this
case you are exchanging one commodity for another. The resulting posting’s cost is $50.00
per share.

5.12 Explicit posting costs

You can make any posting’s cost explicit using the ‘@’ symbol after the amount or amount
expression:

2012-03-10 My Broker

Assets:Brokerage 10 AAPL @ $50.00

Assets:Brokerage:Cash $-500.00

When you do this, since Ledger can now figure out the balancing amount from the first
posting’s cost, you can elide the other amount:

2012-03-10 My Broker

Assets:Brokerage 10 AAPL @ $50.00

Assets:Brokerage:Cash

5.12.1 Primary and secondary commodities

It is a general convention within Ledger that the “top” postings in a transaction contain
the target accounts, while the final posting contains the source account. Whenever a com-
modity is exchanged like this, the commodity moved to the target account is considered
“secondary”, while the commodity used for purchasing and tracked in the cost is “primary”.

Said another way, whenever Ledger sees a posting cost of the form "AMOUNT @
AMOUNT", the commodity used in the second amount is marked “primary”.

Chapter 5: Transactions 39

The only meaning a primary commodity has is that the --market (-V) flag will never
convert a primary commodity into any other commodity. --exchange COMMODITY (-X) still
will, however.

5.13 Posting cost expressions

Just as you can have amount expressions, you can have posting expressions:

2012-03-10 My Broker

Assets:Brokerage 10 AAPL @ ($500.00 / 10)

Assets:Brokerage:Cash

You can even have both:

2012-03-10 My Broker

Assets:Brokerage (5 AAPL * 2) @ ($500.00 / 10)

Assets:Brokerage:Cash

5.14 Total posting costs

The cost figure following the ‘@’ character specifies the per-unit price for the commodity
being transferred. If you’d like to specify the total cost instead, use ‘@@’:

2012-03-10 My Broker

Assets:Brokerage 10 AAPL @@ $500.00

Assets:Brokerage:Cash

Ledger reads this as if you had written:

2012-03-10 My Broker

Assets:Brokerage 10 AAPL @ ($500.00 / 10)

Assets:Brokerage:Cash

5.15 Virtual posting costs

Normally whenever a commodity exchange like this happens, the price of the exchange (such
as $50 per share of AAPL, above) is recorded in Ledger’s internal price history database.
To prevent this from happening in the case of an exceptional transaction, surround the ‘@’
or ‘@@’ with parentheses:

2012-03-10 My Brother

Assets:Brokerage 1000 AAPL (@) $1

Income:Gifts Received

5.16 Commodity prices

When a transaction occurs that exchanges one commodity for another, Ledger records
that commodity price not only within its internal price database, but also attached to
the commodity itself. Usually this fact remains invisible to the user, unless you turn on
--lot-prices to show these hidden price figures.

For example, consider the stock sale given above:

2012-03-10 My Broker

Assets:Brokerage 10 AAPL @ $50.00

Assets:Brokerage:Cash

The commodity transferred into ‘Assets:Brokerage’ is not actually 10 AAPL, but
rather 10 AAPL {$50.00}. The figure in braces after the amount is called the “lot price”.

Chapter 5: Transactions 40

It’s Ledger’s way of remembering that this commodity was transferred through an exchange,
and that $50.00 was the price of that exchange.

This becomes significant if you later sell that commodity again. For example, you might
write this:

2012-04-10 My Broker

Assets:Brokerage:Cash

Assets:Brokerage -10 AAPL @ $75.00

And that would be perfectly fine, but how do you track the capital gains on the sale? It
could be done with a virtual posting:

2012-04-10 My Broker

Assets:Brokerage:Cash

Assets:Brokerage -10 AAPL @ $75.00

(Income:Capital Gains) $-250.00

But this gets messy since capital gains income is very real, and not quite appropriate
for a virtual posting.

Instead, if you reference that same hidden price annotation, Ledger will figure out that
the price of the shares you’re selling, and the cost you’re selling them at, don’t balance:

2012-04-10 My Broker

Assets:Brokerage:Cash $750.00

Assets:Brokerage -10 AAPL {$50.00} @ $75.00

This transaction will fail because the $250.00 price difference between the price you
bought those shares at, and the cost you’re selling them for, does not match. The lot price
also identifies which shares you purchased on that prior date.

5.16.1 Total commodity prices

As a shorthand, you can specify the total price instead of the per-share price in doubled
braces. This goes well with total costs, but is not required to be used with them:

2012-04-10 My Broker

Assets:Brokerage:Cash $750.00

Assets:Brokerage -10 AAPL {{$500.00}} @@ $750.00

Income:Capital Gains $-250.00

It should be noted that this is a convenience only for cases where you buy and sell whole
lots. The {{$500.00}} is not an attribute of the commodity, whereas {$50.00} is. In fact,
when you write {{$500.00}}, Ledger just divides that value by 10 and sees {$50.00}. So if
you use the print command to look at this transaction, you’ll see the single braces form in
the output. The double braces price form is a shorthand only.

Plus, it comes with dangers. This works fine:

2012-04-10 My Broker

Assets:Brokerage 10 AAPL @ $50.00

Assets:Brokerage:Cash $-500.00

2012-04-10 My Broker

Assets:Brokerage:Cash $375.00

Assets:Brokerage -5 AAPL {$50.00} @@ $375.00

Income:Capital Gains $-125.00

2012-04-10 My Broker

Assets:Brokerage:Cash $375.00

Assets:Brokerage -5 AAPL {$50.00} @@ $375.00

Chapter 5: Transactions 41

Income:Capital Gains $-125.00

But this does not do what you might expect:

2012-04-10 My Broker

Assets:Brokerage 10 AAPL @ $50.00

Assets:Brokerage:Cash $-500.00

2012-04-10 My Broker

Assets:Brokerage:Cash $375.00

Assets:Brokerage -5 AAPL {{$500.00}} @@ $375.00

Income:Capital Gains $-125.00

2012-04-10 My Broker

Assets:Brokerage:Cash $375.00

Assets:Brokerage -5 AAPL {{$500.00}} @@ $375.00

Income:Capital Gains $-125.00

And in cases where the amounts do not divide into whole figures and must be rounded,
the capital gains figure could be off by a cent. Use with caution.

5.17 Prices versus costs

Because lot pricing provides enough information to infer the cost, the following two trans-
actions are equivalent:

2012-04-10 My Broker

Assets:Brokerage 10 AAPL @ $50.00

Assets:Brokerage:Cash $-500.00

2012-04-10 My Broker

Assets:Brokerage 10 AAPL {$50.00}

Assets:Brokerage:Cash $-500.00

However, note that what you see in some reports may differ, for example in the print
report. Functionally, however, there is no difference, and neither the register nor the balance
report are sensitive to this difference.

5.18 Fixated prices and costs

If you bought a stock last year, and ask for its value today, Ledger will consult its price
database to see what the most recent price for that stock is. You can short-circuit this
lookup by “fixing” the price at the time of a transaction. This is done using ‘{=AMOUNT}’:

2012-04-10 My Broker

Assets:Brokerage 10 AAPL {=$50.00}

Assets:Brokerage:Cash $-500.00

These 10 AAPL will now always be reported as being worth $50, no matter what else
happens to the stock in the meantime.

Fixated prices are a special case of using lot valuation expressions (see below) to fix the
value of a commodity lot.

Since price annotations and costs are largely interchangeable and a matter of preference,
there is an equivalent syntax for specified fixated prices by way of the cost:

2012-04-10 My Broker

Assets:Brokerage 10 AAPL @ =$50.00

Assets:Brokerage:Cash $-500.00

Chapter 5: Transactions 42

This is the same as the previous transaction, with the same caveats found in Section 5.17
[Prices versus costs], page 41.

5.19 Lot dates

In addition to lot prices, you can specify lot dates and reveal them with --lot-dates.
Other than that, however, they have no special meaning to Ledger. They are specified after
the amount in square brackets (the same way that dates are parsed in value expressions):

2012-04-10 My Broker

Assets:Brokerage:Cash $375.00

Assets:Brokerage -5 AAPL {$50.00} [2012-04-10] @@ $375.00

Income:Capital Gains $-125.00

5.20 Lot notes

You can also associate arbitrary notes for your own record keeping in parentheses, and reveal
them with --lot-notes. One caveat is that the note cannot begin with an ‘@’ character,
as that would indicate a virtual cost:

2012-04-10 My Broker

Assets:Brokerage:Cash $375.00

Assets:Brokerage -5 AAPL {$50.00} [2012-04-10] (Oh my!) @@ $375.00

Income:Capital Gains $-125.00

You can specify any combination of lot prices, dates or notes, in any order. They are all
optional.

To show all lot information in a report, use --lots.

5.21 Lot value expressions

Normally when you ask Ledger to display the values of commodities held, it uses a value
expression called “market” to determine the most recent value from its price database—
even downloading prices from the Internet, if --download (-Q) was specified and a suitable
getquote script is found on your system.

However, you can override this valuation logic by providing a commodity valuation
expression in doubled parentheses. This expression must result in one of two values: either
an amount to always be used as the per-share price for that commodity; or a function taking
three arguments, which is called to determine that price.

If you use the functional form, you can either specify a function name, or a lambda
expression. Here’s a function that yields the price as $10 in whatever commodity is being
requested:

define ten_dollars(s, date, t) = market($10, date, t)

I can now use that in a lot value expression as follows:

2012-04-10 My Broker

Assets:Brokerage:Cash $375.00

Assets:Brokerage -5 AAPL {$50.00} ((ten_dollars)) @@ $375.00

Income:Capital Gains $-125.00

Alternatively, I could do the same thing without pre-defining a function by using a
lambda expression taking three arguments:

2012-04-10 My Broker

Chapter 5: Transactions 43

A:B:Cash $375.00

A:B -5 AAPL {$50.00} ((s, d, t -> market($10, date, t))) @@ $375.00

Income:Capital Gains $-125.00

The arguments passed to these functions have the following meaning:

• source The source commodity string, or an amount object. If it is a string, the return
value must be an amount representing the price of the commodity identified by that
string (example: ‘$’). If it is an amount, return the value of that amount as a new
amount (usually calculated as commodity price times source amount).

• date The date to use for determining the value. If null, it means no date was specified,
which can mean whatever you want it to mean.

• target If not null, a string representing the desired target commodity that the com-
modity price, or repriced amount, should be valued in. Note that this string can be
a comma-separated list, and that some or all of the commodities in that list may be
suffixed with an exclamation mark, to indicate what is being desired.

In most cases, it is simplest to either use explicit amounts in your valuation expressions,
or just pass the arguments down to ‘market’ after modifying them to suit your needs.

5.22 Automated Transactions

An automated transaction is a special kind of transaction which adds its postings to other
transactions any time one of that other transactions’ postings matches its predicate. The
predicate uses the same query syntax as the Ledger command-line.

Consider this posting:
2012-03-10 KFC

Expenses:Food $20.00

Assets:Cash

If I write this automated transaction before it in the file:
= expr true

Foo $50.00

Bar $-50.00

Then the first transaction will be modified during parsing as if I’d written this:
2012-03-10 KFC

Expenses:Food $20.00

Foo $50.00

Bar $-50.00

Assets:Cash $-20.00

Foo $50.00

Bar $-50.00

Despite this fancy logic, automated transactions themselves follow most of the same rules
as regular transactions: their postings must balance (unless you use a virtual posting), you
can have metadata, etc.

One thing you cannot do, however, is elide amounts in an automated transaction.

5.22.1 Amount multipliers

As a special case, if an automated transaction’s posting’s amount (phew) has no commodity,
it is taken as a multiplier upon the matching posting’s cost. For example:

= expr true

Chapter 5: Transactions 44

Foo 50.00

Bar -50.00

2012-03-10 KFC

Expenses:Food $20.00

Assets:Cash

Then the latter transaction turns into this during parsing:
2012-03-10 KFC

Expenses:Food $20.00

Foo $1000.00

Bar $-1000.00

Assets:Cash $-20.00

Foo $1000.00

Bar $-1000.00

5.22.2 Accessing the matching posting’s amount

If you use an amount expression for an automated transaction’s posting, that expression
has access to all the details of the matched posting. For example, you can refer to that
posting’s amount using the “amount” value expression variable:

= expr true

(Foo) (amount * 2) ; same as just "2" in this case

2012-03-10 KFC

Expenses:Food $20.00

Assets:Cash

This becomes:
2012-03-10 KFC

Expenses:Food $20.00

(Foo) $40.00

Assets:Cash $-20.00

(Foo) $-40.00

5.22.3 Referring to the matching posting’s account

Sometimes you want to refer to the account that was matched in some way within the
automated transaction itself. This is done by using the string ‘$account’, anywhere within
the account part of the automated posting:

= food

(Budget:$account) 10

2012-03-10 KFC

Expenses:Food $20.00

Assets:Cash

Becomes:
2012-03-10 KFC

Expenses:Food $20.00

(Budget:Expenses:Food) $200.00

Assets:Cash $-20.00

It is possible to refer to information within the posting using a VEXPR. Note that the
syntax for using a VEXPR is "%(VEXPR)".

= ^Income

Liabilities:Tax:%(tag(/Tax/)) (20/120)

$account (-20/120)

Chapter 5: Transactions 45

2024-07-04 * Sale

; Tax: General

Assets 10 USD

Income:Customer A

Becomes:
2024/07/04 * Sale

; Tax: General

Assets 10 USD

Income:Customer A -10 USD

Liabilities:Tax:General -2 USD

Income:Customer A 2 USD

Keep in mind that if you are using --strict or --pedantic you will have to explicitly
define an account to avoid errors. When using ‘$account’, such definition can be done thus:

account $account

5.22.4 Applying metadata to every matched posting

If the automated transaction has a transaction note, that note is copied (along with any
metadata) to every posting that matches the predicate:

= food

; Foo: Bar

(Budget:$account) 10

2012-03-10 KFC

Expenses:Food $20.00

Assets:Cash

Becomes:
2012-03-10 KFC

Expenses:Food $20.00

; Foo: Bar

(Budget:Expenses:Food) $200.00

Assets:Cash $-20.00

5.22.5 Applying metadata to the generated posting

If the automated transaction’s posting has a note, that note is carried to the generated
posting within the matched transaction:

= food

(Budget:$account) 10

; Foo: Bar

2012-03-10 KFC

Expenses:Food $20.00

Assets:Cash

Becomes:
2012-03-10 KFC

Expenses:Food $20.00

(Budget:Expenses:Food) $200.00

; Foo: Bar

Assets:Cash $-20.00

This is slightly different from the rules for regular transaction notes, in that an automated
transaction’s note does not apply to every posting within the automated transaction itself,
but rather to every posting it matches.

Chapter 5: Transactions 46

5.22.6 State flags

Although you cannot mark an automated transaction as a whole as cleared or pending, you
can mark its postings with a ‘*’ or ‘!’ before the account name, and that state flag gets
carried to the generated posting.

5.22.7 Effective Dates

In the real world, transactions do not take place instantaneously. Purchases can take several
days to post to a bank account. And you may pay ahead for something for which you want
to distribute costs. With Ledger you can control every aspect of the timing of a transaction.

Say you’re in business. If you bill a customer, you can enter something like
2008/01/01=2008/01/14 Client invoice ; estimated date you'll be paid

Assets:Accounts Receivable $100.00

Income: Client name

Then, when you receive the payment, you change it to
2008/01/01=2008/01/15 Client invoice ; actual date money received

Assets:Accounts Receivable $100.00

Income: Client name

and add something like
2008/01/15 Client payment

Assets:Checking $100.00

Assets:Accounts Receivable

Now
$ ledger --begin 2008/01/01 --end 2008/01/14 bal Income

gives you your accrued income in the first two weeks of the year, and
$ ledger --effective --begin 2008/01/01 --end 2008/01/14 bal Income

gives you your cash basis income in the same two weeks.

Another use is distributing costs out in time. As an example, suppose you just prepaid
into a local vegetable co-op that sustains you through the winter. It costs $225 to join the
program, so you write a check. You don’t want your October grocery budget to be blown
because you bought food ahead, however. What you really want is for the money to be
evenly distributed over the next six months so that your monthly budgets gradually take
a hit for the vegetables you’ll pick up from the co-op, even though you’ve already paid for
them.

2008/10/16 * (2090) Bountiful Blessings Farm

Expenses:Food:Groceries $ 37.50 ; [=2008/10/01]

Expenses:Food:Groceries $ 37.50 ; [=2008/11/01]

Expenses:Food:Groceries $ 37.50 ; [=2008/12/01]

Expenses:Food:Groceries $ 37.50 ; [=2009/01/01]

Expenses:Food:Groceries $ 37.50 ; [=2009/02/01]

Expenses:Food:Groceries $ 37.50 ; [=2009/03/01]

Assets:Checking

This entry accomplishes this. Every month you’ll see an automatic $37.50 deficit like
you should, while your checking account really knows that it debited $225 this month.

And using the --effective (or --aux-date) option, the initial date will be overridden
by the effective dates.

$ ledger --effective register Groceries

08-Oct-01 Bountiful Blessings.. Expense:Food:Groceries $ 37.50 $ 37.50

Chapter 5: Transactions 47

08-Nov-01 Bountiful Blessings.. Expense:Food:Groceries $ 37.50 $ 75.00

08-Dec-01 Bountiful Blessings.. Expense:Food:Groceries $ 37.50 $ 112.50

09-Jan-01 Bountiful Blessings.. Expense:Food:Groceries $ 37.50 $ 150.00

09-Feb-01 Bountiful Blessings.. Expense:Food:Groceries $ 37.50 $ 187.50

09-Mar-01 Bountiful Blessings.. Expense:Food:Groceries $ 37.50 $ 225.00

Note that the --aux-date option is an alias for --effective; for a brief explanation of
auxiliary date see Section 5.3 [Auxiliary dates], page 32.

5.22.8 Periodic Transactions

A periodic transaction starts with a tilde ‘~’ followed by a period expression (see Section 8.4
[Period Expressions], page 95). Periodic transactions are used for budgeting and forecasting
only, they have no effect without the --budget option specified. For examples and details,
see Chapter 9 [Budgeting and Forecasting], page 97.

5.22.9 Concrete Example of Automated Transactions

5.22.9.1 Tithing

As a Bahá’́ı, I need to compute Huqúqu’lláh whenever I acquire assets. It is similar to
tithing for Jews and Christians, or to Zakát for Muslims. The exact details of computing
Huqúqu’lláh are somewhat complex, but if you have further interest, please consult the
Web.

Ledger makes this otherwise difficult law very easy. Just set up an automated posting
at the top of your ledger file:

; This automated transaction will compute Huqúqu'lláh based on this

; journal's postings. Any accounts that match will affect the

; Liabilities:Huqúqu'lláh account by 19% of the value of that posting.

= /^(?:Income:|Expenses:(?:Business|Rent$|Furnishings|Taxes|Insurance))/

(Liabilities:Huqúqu'lláh) 0.19

This automated posting works by looking at each posting in the ledger file. If
any match the given value expression, 19% of the posting’s value is applied to the
‘Liabilities:Huqúqu'lláh’ account. So, if $1000 is earned from ‘Income:Salary’, $190
is added to ‘Liabilities:Huqúqu'lláh’; if $1000 is spent on Rent, $190 is subtracted.

2003/01/01 (99) Salary

Income:Salary -$1000

Assets:Checking

2003/01/01 (100) Rent

Expenses:Rent $500

Assets:Checking

The ultimate balance of Huqúqu’lláh reflects how much is owed in order to fulfill one’s
obligation to Huqúqu’lláh. When ready to pay, just write a check to cover the amount
shown in ‘Liabilities:Huqúqu'lláh’. That transaction would look like:

2003/01/01 (101) Bahá'ı́ Huqúqu'lláh Trust

Liabilities:Huqúqu'lláh $1,000.00

Assets:Checking

That’s it. To see how much Huqúq is currently owed based on your ledger transactions,
use:

$ ledger balance Liabilities:Huqúq

$-95 Liabilities:Huqúqu'lláh

Chapter 5: Transactions 48

This works fine, but omits one aspect of the law: that Huqúq is only due once the
liability exceeds the value of 19 mithqáls of gold (which is roughly 2.22 ounces). So what
we want is for the liability to appear in the balance report only when it exceeds the present
day value of 2.22 ounces of gold. This can be accomplished using the command:

$ ledger -Q -t "/Liab.*Huquq/?(a/P{2.22 AU}<={-1.0}&a):a" bal liab

With this command, the current price for gold is downloaded, and the Huqúqu’lláh is
reported only if its value exceeds that of 2.22 ounces of gold. If you wish the liability to be
reflected in the parent subtotal either way, use this instead:

$ ledger -Q -T "/Liab.*Huquq/?(O/P{2.22 AU}<={-1.0}&O):O" bal liab

In some cases, you may wish to refer to the account of whichever posting matched
your automated transaction’s value expression. To do this, use the special account name
‘$account’:

= /^Some:Long:Account:Name/

[$account] -0.10

[Savings] 0.10

This example causes 10% of the matching account’s total to be deferred to the ‘Savings’
account—as a balanced virtual posting, which may be excluded from reports by using
--real.

5.22.9.2 Credit Card Cashback

Credit cards sometimes provide a cashback percentage of purchases. This can be setup with
the following:

; This automated transaction will add to "Assets:Credit Card Cashback"

; the amount of the transaction multiplied by the "cashback" tag.

= "Liabilities:Credit Card" and %cashback

Assets:Credit Card Cashback (-amount * tag("cashback") * 0.01)

Income:Credit Card Rewards (amount * tag("cashback") * 0.01)

To add a transaction that gives 2% cashback:
2023/06/06 McDonalds

; cashback:: 2%

Expenses:Food:Restaurants $23.98

Liabilities:Credit Card

Now when a report is generated, e.g.
$ ledger -f cashback.dat reg

The cashback postings appear with the transaction.
23-Jun-06 McDonalds Expen:Food:Restaurants $23.98 $23.98

Liabilitie:Credit Card $-23.98 0

..Credit Card Cashback $0.48 $0.48

In:Credit Card Rewards $-0.48 0

49

6 Building Reports

6.1 Introduction

The power of Ledger comes from the incredible flexibility in its reporting commands, com-
bined with formatting commands. Some options control what is included in the calculations,
and formatting controls how it is displayed. The combinations are infinite. This chapter
will show you the basics of combining various options and commands. In the next chapters
you will find details about the specific commands and options.

6.2 Balance Reports

6.2.1 Controlling the Accounts and Payees

The balance report is the most commonly used report. The simplest invocation is:
$ ledger balance -f drewr3.dat

which will print the balances of every account in your journal.
$ -3,804.00 Assets

$ 1,396.00 Checking

$ 30.00 Business

$ -5,200.00 Savings

$ -1,000.00 Equity:Opening Balances

$ 6,654.00 Expenses

$ 5,500.00 Auto

$ 20.00 Books

$ 300.00 Escrow

$ 334.00 Food:Groceries

$ 500.00 Interest:Mortgage

$ -2,030.00 Income

$ -2,000.00 Salary

$ -30.00 Sales

$ -63.60 Liabilities

$ -20.00 MasterCard

$ 200.00 Mortgage:Principal

$ -243.60 Tithe

$ -243.60

Most times, this is more than you want. Limiting the results to specific accounts is as
easy as entering the names of the accounts after the command:

$ ledger balance -f drewr3.dat Auto MasterCard

$ 5,500.00 Expenses:Auto

$ -20.00 Liabilities:MasterCard

$ 5,480.00

Note the implicit logical or between ‘Auto’ and ‘Mastercard’.

If you want the entire contents of a branch of your account tree, use the highest common
name in the branch:

$ ledger balance -f drewr3.dat Income

$ -2,030.00 Income

$ -2,000.00 Salary

$ -30.00 Sales

Chapter 6: Building Reports 50

$ -2,030.00

You can use general regular expressions (PCRE) in nearly any place Ledger needs a
string:

$ ledger balance -f drewr3.dat ^Bo

This first example looks for any account starting with ‘Bo’, of which there are none.

$ ledger balance -f drewr3.dat Bo

$ 20.00 Expenses:Books

This second example looks for any account containing ‘Bo’, which is ‘Expenses:Books’.

If you want to know exactly how much you have spent in a particular account on a
particular payee, the following are equivalent:

$ ledger balance Expenses:Auto:Fuel and @Chevron

$ ledger balance --limit 'account=~/Expenses:Auto:Fuel/ and payee=~/Chevron/'

will show you the amount expended on gasoline at Chevron. The second example is the
first example of the very powerful expression language available to shape reports. The first
example may be easier to remember, but learning to use the second will open up far more
possibilities.

If you want to exclude specific accounts from the report, you can exclude multiple ac-
counts with parentheses:

$ ledger bal Expenses and not (Expenses:Drinks or Expenses:Candy or Expenses:Gifts)

6.2.2 Controlling Formatting

These examples all use the default formatting for the balance report. Customizing the
formatting allows you to see only what you want, or interface Ledger with other programs.
For examples and details, see Chapter 12 [Format Strings], page 109, and Section 6.4.1
[Asset Allocation], page 51.

6.3 Typical queries

A query such as the following shows all expenses since last October, sorted by total:

$ ledger -b "last oct" -S T bal ^expenses

From left to right the options mean: Show transactions since last October; sort by
the absolute value of the total; and report the balance for all accounts that begin with
‘expenses’.

6.3.1 Reporting monthly expenses

The following query makes it easy to see monthly expenses, with each month’s expenses
sorted by the amount:

$ ledger -M --period-sort "(amount)" reg ^expenses

Now, you might wonder where the money came from to pay for these things. To see that
report, add --related (-r), which shows the “related account” postings:

$ ledger -M --period-sort "(amount)" -r reg ^expenses

But maybe this prints too much information. You might just want to see how much you’re
spending with your MasterCard. That kind of query requires the use of a display predicate,

Chapter 6: Building Reports 51

since the postings calculated must match ‘^expenses’, while the postings displayed must
match ‘mastercard’. The command would be:

$ ledger -M -r --display 'account=~/mastercard/' reg ^expenses

This query says: Report monthly subtotals; report the “related account” postings; dis-
play only related postings whose account matches ‘mastercard’, and base the calculation
on postings matching ‘^expenses’.

This works just as well for reporting the overall total, too:

$ ledger -s -r --display "account=~/mastercard/" reg ^expenses

The --subtotal (-s) option subtotals all postings, just as --monthly (-M) subtotaled
by the month. The running total in both cases is off, however, since a display expression is
being used.

6.4 Advanced Reports

6.4.1 Asset Allocation

A very popular method of managing portfolios is to control the percent allocation of assets
by certain categories. The mix of categories and the weights applied to them vary by
investing philosophy, but most follow a similar pattern. Tracking asset allocation in ledger
is not difficult but does require some additional effort to describe how the various assets
you own contribute to the asset classes you want to track.

In our simple example we assume you want to apportion your assets into the general
categories of domestic and international equities (stocks) and a combined category of bonds
and cash. For illustrative purposes, we will use several publicly available mutual funds from
Vanguard. The three funds we will track are the Vanguard 500 IDX FD Signal (VIFSX), the
Vanguard Target Retirement 2030 (VTHRX), and the Vanguard Short Term Federal Fund
(VSGBX). Each of these funds allocates assets to different categories of the investment
universe and in different proportions. When you buy a share of VTHRX, that share is
partially invested in equities, and partially invested in bonds and cash. Below is the asset
allocation for each of the instruments listed above:

Domestic Global
Symbol Equity Equity bonds/cash
VIFSX 100%
VTHRX 24.0% 56.3% 19.7%
VSGBX 100%

These numbers are available from the prospectus of any publicly available mutual fund.
Of course a single stock issue is 100% equity and a single bond issue is 100% bonds.

We track purchases of specific investments using the symbol of that investment as its
commodity. How do we tell Ledger that a share of VTHRX is 24% Domestic equity? Enter
automatic transactions and virtual accounts.

At the top of our ledger we enter automatic transactions that describe these proportions
to Ledger. In the same entries we set up virtual accounts that let us separate these abstract
calculations from our actual balances.

For the three instruments listed above, those automatic transactions would look like:

= expr (commodity == 'VIFSX')

Chapter 6: Building Reports 52

(Allocation:Equities:Domestic) 1.000

= expr (commodity == 'VTHRX')

(Allocation:Equities:Global) 0.240

(Allocation:Equities:Domestic) 0.563

(Allocation:Bonds/Cash) 0.197

= expr (commodity == 'VBMFX')

(Allocation:Bonds/Cash) 1.000

2015-01-01 Buy VIFSX

Assets:Broker 100 VIFSX

Assets:Cash $-10000

2015-01-01 Buy VTHRX

Assets:Broker 10 VTHRX

Assets:Cash $-10000

2015-01-01 Buy VBMFX

Assets:Broker 1 VBMFX

Assets:Cash $-10000

How do these work? First the ‘=’ sign at the beginning of the line tells ledger this is an
automatic transaction to be applied when the condition following the ‘=’ is true. After the
‘=’ sign is a value expression (see Chapter 11 [Value Expressions], page 100) that returns
true any time a posting contains the commodity of interest.

The following line gives the proportions (not percentages) of each unit of commodity that
belongs to each asset class. Whenever Ledger sees a buy or sell of a particular commodity
it will credit or debit these virtual accounts with that proportion of the number of shares
moved.

Now that Ledger understands how to distribute the commodities amongst the various
asset classes how do we get a report that tells us our current allocation? Using the balance
command and some tricky formatting!

ledger bal Allocation --current --format "\

%-17((depth_spacer)+(partial_account))\

%10(percent(market(display_total), market(parent.total)))\

%16(market(display_total))\n%/"

Which yields:

Allocation 100.00% $30000

Bonds/Cash 39.90% $11970

Equities 60.10% $18030

Domestic 86.69% $15630

Global 13.31% $2400

Let’s look at the Ledger invocation a bit closer. The command above is split into lines
for clarity. The first line is very vanilla Ledger asking for the current balances of the account
in the “Allocation” tree, using a special formatter.

The magic is in the formatter. The second line simply tells Ledger to print the partial
account name indented by its depth in the tree. The third line is where we calculate
and display the percentages. The display_total command gives the values of the total
calculated for the account in this line. The parent.total command gives the total for the
next level up in the tree. percent formats their ratio as a percentage. The fourth line

Chapter 6: Building Reports 53

tells ledger to display the current market value of the line. The last two characters ‘%/’ tell
Ledger what to do for the last line, in this case, nothing.

6.4.2 Visualizing with Gnuplot

If you have the “Gnuplot” program installed, you can graph any of the above register reports.
The script to do this is included in the ledger distribution, and is named contrib/report.
Install report anywhere along your PATH, and then use report instead of ledger when
doing a register report. The only thing to keep in mind is that you must specify --amount-

data (-j) or --total-data (-J) to indicate whether “Gnuplot” should plot the amount,
or the running total. For example, this command plots total monthly expenses made on
your MasterCard.

$ report -j -M -r --display "account =~ /mastercard/" reg ^expenses

The report script is a very simple Bourne shell script, that passes a set of scripted
commands to “Gnuplot”. Feel free to modify the script to your liking, since you may prefer
histograms to line plots, for example.

Here are some useful plots:
report -j -M reg ^expenses # monthly expenses

report -J reg checking # checking account balance

report -J reg ^income ^expenses # cash flow report

net worth report, ignoring non-$ postings

report -J -l "Ua>={\$0.01}" reg ^assets ^liab

net worth report starting last February. the use of a display

predicate (-d) is needed, otherwise the balance will start at

zero, and thus the y-axis will not reflect the true balance

report -J -l "Ua>={\$0.01}" -d "d>=[last feb]" reg ^assets ^liab

The last report uses both a calculation predicate --limit EXPR (-l) and a display
predicate --display EXPR (-d). The calculation predicate limits the report to postings
whose amount is greater than or equal to $0.01 (which can only happen if the posting
amount is in dollars). The display predicate limits the transactions displayed to just those
since last February, even though those transactions from before will be computed as part
of the balance.

54

7 Reporting Commands

7.1 Primary Financial Reports

7.1.1 The balance command

The balance command reports the current balance of all accounts. It accepts a list of
optional regexes, which confine the balance report to the matching accounts. If an account
contains multiple types of commodities, each commodity’s total is reported separately.

7.1.2 The equity command

The equity command prints out account balances as if they were transactions. This makes
it easy to establish the starting balances for an account, such as when Section 4.9 [Archiving
Previous Years], page 31.

7.1.3 The register command

The register command displays all the postings occurring in a single account, line by line.
The account regex must be specified as the only argument to this command. If any regexes
occur after the required account name, the register will contain only those postings that
match, which makes it very useful for hunting down a particular posting.

The output from register is very close to what a typical checkbook, or single-account
ledger, would look like. It also shows a running balance. The final running balance of any
register should always be the same as the current balance of that account.

If you have “Gnuplot” installed, you may plot the amount or running total of any
register by using the script report, which is included in the Ledger distribution. The only
requirement is that you add either --amount-data (-j) or --total-data (-J) to your
register command, in order to plot either the amount or total column, respectively.

7.1.4 The print command

The print command prints out ledger transactions in a textual format that can be parsed by
Ledger. They will be properly formatted, and output in the most economic form possible.
The print command also takes a list of optional regexes, which will cause only those
postings which match in some way to be printed.

The print command can be a handy way to clean up a ledger file whose formatting has
gotten out of hand.

7.2 Reports in other Formats

7.2.1 Comma Separated Values files

7.2.1.1 The csv command

The csv command prints the desired ledger transactions in a csv format suitable for im-
porting into other programs. You can specify the transactions to print using all the normal
limiting and searching functions.

Chapter 7: Reporting Commands 55

7.2.1.2 The convert command

The convert command parses a comma separated value (csv) file and prints Ledger trans-
actions. Many banks offer csv file downloads. Unfortunately, the file formats, aside from
the commas, are all different. The ledger convert command tries to help as much as it can.

Your bank’s csv files will have fields in different orders from other banks, so there must
be a way to tell Ledger what to expect. Insert a line at the beginning of the csv file that
describes the fields to Ledger.

For example, this is a portion of a csv file downloaded from a credit union in the United
States:

Account Name: VALUFIRST CHECKING

Account Number: 71

Date Range: 11/13/2011 - 12/13/2011

Transaction Number,Date,Description,Memo,Amount Debit,Amount Credit,Balance,Check Number,Fees

767406,12/13/2011,"Deposit","CASH DEPOSIT",,45.00,00001646.89,,

767718,12/13/2011,"Withdrawal","ACE HARDWARE 16335 S HOUGHTON RD",8.80,,00001640.04,,

767406,12/13/2011,"Withdrawal","ACE HARDWARE 16335 S HOUGHTON RD",1.03,,00001648.84,,

683342,12/13/2011,"Visa Checking","NetFlix Date 12/12/11 000326585896 5968",21.85,,00001649.87,,

639668,12/13/2011,"Withdrawal","ID: 1741472662 CO: XXAA.COM PAYMNT",236.65,,00001671.72,,

1113648,12/12/2011,"Withdrawal","Tuscan IT #00037657",29.73,,00001908.37,,

Unfortunately, as it stands Ledger cannot read it, but you can. Ledger expects the
first line to contain a description of the fields on each line of the file. The fields ledger
can recognize contain these case-insensitive strings date, posted, code, payee or desc or
description, amount or credit, debit, cost, total, and note.

Delete the account description lines at the top, and replace the first line in the data
above with:

,date,payee,note,debit,credit,,code,

Then execute ledger like this:
$ ledger convert download.csv --input-date-format "%m/%d/%Y"

Where the --input-date-format DATE_FORMAT option tells ledger how to interpret the
dates.

Importing csv files is a lot of work, but is very amenable to scripting.

If your csv has only one amount column with opposite signs for credits and debits, this
is also supported. For example, the first fiew lines of the above account could also be in the
following format:

,date,payee,note,credit,,code,

767406,12/13/2011,"Deposit","CASH DEPOSIT",45.00,00001646.89,,

767718,12/13/2011,"Withdrawal","ACE HARDWARE 16335 S HOUGHTON RD",-8.80,00001640.04,,

If there are columns in the bank data you would like to keep in your ledger data, besides
the primary fields described above, you can name them in the field descriptor list and Ledger
will include them in the transaction as meta data if it doesn’t recognize the field name. For
example, if you want to capture the bank transaction number and it occurs in the first
column of the data use:

transid,date,payee,note,debit,credit,,code,

Ledger will include ‘; transid: 767718’ in the first transaction from the file above.

The convert command accepts four options. They are --invert which inverts the
amount, --auto-match which automatically matches an account from the Ledger journal

Chapter 7: Reporting Commands 56

for every CSV line, --account STR which you can use to specify the account to balance
against, and --rich-data which stores additional tag/value pairs.

Using the two first lines of the above csv file,
,date,payee,note,debit,credit,balance,code,

767406,12/13/2011,"Deposit","CASH DEPOSIT",,45.00,00001646.89,,

767718,12/13/2011,"Withdrawal","ACE HARDWARE 16335 S HOUGHTON RD",8.80,,00001640.04,,

and launching the below command,
$ ledger convert download.csv --input-date-format "%m/%d/%Y" \

--invert --account Assets:MyBank --rich-data \

--file sample.dat --now=2012/01/13

you will get the result:
2011/12/13 * Deposit ;CASH DEPOSIT

; balance: 00001646.89

; CSV: 767406,12/13/2011,"Deposit","CASH DEPOSIT",,45.00,00001646.89,,

; Imported: 2012/01/13

; UUID: ce0b7d42b02ce5eaf0d828c3b1028041fd09494c

Expenses:Unknown -45

Assets:MyBank

2011/12/13 * Withdrawal ;ACE HARDWARE 16335 S HOUGHTON RD

; balance: 00001640.04

; CSV: 767718,12/13/2011,"Withdrawal","ACE HARDWARE 16335 S HOUGHTON RD",8.80,,00001640.04,,

; Imported: 2012/01/13

; UUID: 0aaf85911adc447ea2d5377ff6a60d6b2940047f

Expenses:Unknown 8.8

Assets:MyBank

The three added metadata are: ‘CSV’ as the original line from csv file, ‘Imported’ as the
date when the csv file was imported into Ledger, and ‘UUID’ as a checksum of original csv
line.

If an entry with the same ‘UUID’ tag is already included in the normal ledger file (specified
via --file FILE (-f) or via the environment variable LEDGER_FILE) this entry will not be
printed again.

In the output above, the account is ‘Expenses:Unknown’ for CSV lines. You can use the
--auto-match option to automatically match an account from your Ledger journal.

You can also use convert with payee and account directives. First, you can use the
payee and alias directive to rewrite the payee field based on some rules. Then you can use
the account and its payee directive to specify the account. I use it like this, for example:

payee Aldi

alias ^ALDI SUED SAGT DANKE

account Aufwand:Einkauf:Lebensmittel

payee ^(Aldi|Alnatura|Kaufland|REWE)$

Note that it may be necessary for the output of ‘ledger convert’ to be passed through
ledger print a second time if you want to match on the new payee field. During the
ledger convert run, only the original payee name as specified in the csv data seems to be
used.

7.2.2 The lisp command

The lisp command prints results in a form that can be read directly by Emacs Lisp. The
format of the sexp is:

((BEG-POS CLEARED DATE CODE PAYEE

Chapter 7: Reporting Commands 57

(ACCOUNT AMOUNT)...) ; list of postings

...) ; list of transactions

emacs can also be used as a synonym for lisp.

7.2.3 Emacs org Mode

Org mode has a sub-system known as Babel which allows for literate programming. This
allows you to mix text and code within the same document and automatically execute code
which may generate results which will then appear in the text.

One of the languages supported by Babel is Ledger, so that you can have ledger com-
mands embedded in a text file and have the output of ledger commands also appear in the
text file. The output can be updated whenever any new ledger entries are added.

For instance, the following Org mode text document snippet illustrates a very naive but
still useful application of the Babel system:

* A simple test of ledger in an org file

The following are some entries and I have requested that ledger be run

to generate a balance on the accounts. I could have asked for

a register or, in fact, anything at all the ledger can do through

command-line options.

#+begin_src ledger :cmdline bal :results value

2010/01/01 * Starting balance

assets:bank:savings £1300.00
income:starting balances

2010/07/22 * Got paid

assets:bank:chequing £1000.00
income:salary

2010/07/23 Rent

expenses:rent £500.00
assets:bank:chequing

#+end_src

#+results:

: £1800.00 assets:bank

: £500.00 chequing

: £1300.00 savings

: £500.00 expenses:rent

: £-2300.00 income

: £-1000.00 salary

: £-1300.00 starting balances

Typing C-c C-c anywhere in the “ledger source code block” will invoke ledger on the
contents of that block and generate a “results” block. The results block can appear anywhere
in the file but, by default, will appear immediately below the source code block.

You can combine multiple source code blocks before executing ledger and do all kinds of
other wonderful things with Babel (and Org mode).

7.2.4 Org mode with Babel

Using Babel, it is possible to record financial transactions conveniently in an org file and
subsequently generate the financial reports required.

As of Org mode 7.01, Ledger support is provided. Check the Babel documentation
on Worg (https://orgmode.org/worg/org-contrib/babel/) for instructions on how to
achieve this but I currently do this directly as follows:

https://orgmode.org/worg/org-contrib/babel/
https://orgmode.org/worg/org-contrib/babel/

Chapter 7: Reporting Commands 58

(org-babel-do-load-languages

'org-babel-load-languages

'((ledger . t) ;this is the important one for this tutorial

))

Once Ledger support in Babel has been enabled, we can proceed to include Ledger entries
within an org file. There are three ways (at least) in which these can be included:

1. place all Ledger entries within one single source block and execute this block with
different arguments to generate the appropriate reports,

2. place Ledger entries in more than one source block and use the noweb literary program-
ming approach, supported by Babel, to combine these into one block elsewhere in the
file for processing by Ledger,

3. place Ledger entries in different source blocks and use tangle to generate a Ledger file
which you can subsequently process using Ledger directly.

The first two are described in more detail in this short tutorial.

7.2.4.1 Embedded Ledger example with single source block

The easiest, albeit possibly least useful, way in which to use Ledger within an org file is to
use a single source block to record all Ledger entries. The following is an example source
block:

#+name: allinone

#+begin_src ledger

2010/01/01 * Starting balance

assets:bank:savings £1300.00
income:starting balances

2010/07/22 * Got paid

assets:bank:chequing £1000.00
income:salary

2010/07/23 Rent

expenses:rent £500.00
assets:bank:chequing

2010/07/24 Food

expenses:food £150.00
assets:bank:chequing

2010/07/31 * Interest on bank savings

assets:bank:savings £3.53
income:interest

2010/07/31 * Transfer savings

assets:bank:savings £250.00
assets:bank:chequing

2010/08/01 got paid again

assets:bank:chequing £1000.00
income:salary

#+end_src

In this example, we have combined both expenses and income into one set of Ledger
entries. We can now generate register and balance reports (as well as many other types of
reports) using Babel to invoke Ledger with specific arguments. The arguments are passed
to Ledger using the :cmdline header argument. In the code block above, there is no such
argument so the system takes the default. For Ledger code blocks, the default :cmdline
argument is bal and the result of evaluating this code block (C-c C-c) would be:

#+results: allinone()

: £2653.53 assets:bank

Chapter 7: Reporting Commands 59

: £1100.00 chequing

: £1553.53 savings

: £650.00 expenses

: £150.00 food

: £500.00 rent

: £-3303.53 income

: £-3.53 interest

: £-2000.00 salary

: £-1300.00 starting balances

If, instead, you wished to generate a register of all the transactions, you would change
the #+begin_src line for the code block to include the required command-line option:

#+begin_src ledger :cmdline reg

Evaluating the code block again would generate a different report.

Having to change the actual directive on the code block and re-evaluate makes it difficult
to have more than one view of your transactions and financial state. Eventually, Babel will
support passing arguments to #+call evaluations of code blocks but this support is missing
currently. Instead, we can use the concepts of literary programming, as implemented by
the noweb features of Babel, to help us.

7.2.4.2 Multiple Ledger source blocks with noweb

The noweb feature of Babel allows us to expand references to other code blocks within a
code block. For Ledger, this can be used to group transactions according to type, say, and
then bring various sets of transactions together to generate reports.

Using the same transactions used above, we could consider splitting these into expenses
and income, as follows:

7.2.4.3 Income Entries

The first set of entries relates to income, either monthly pay or interest, all typically going
into one of my bank accounts. Here, I have placed several entries, but we could have had
each entry in a separate src block. Note that all code blocks you wish to refer to later must
have the :noweb yes header argument specified.

#+name: income

#+begin_src ledger :noweb yes

2010/01/01 * Starting balance

assets:bank:savings £1300.00
income:starting balances

2010/07/22 * Got paid

assets:bank:chequing £1000.00
income:salary

2010/07/31 * Interest on bank savings

assets:bank:savings £3.53
income:interest

2010/07/31 * Transfer savings

assets:bank:savings £250.00
assets:bank:chequing

2010/08/01 got paid again

assets:bank:chequing £1000.00
income:salary

#+end_src

Chapter 7: Reporting Commands 60

7.2.4.4 Expenses

The following entries relate to personal expenses, such as rent and food. Again, these have
all been placed in a single src block but could have been done individually.

#+name: expenses

#+begin_src ledger :noweb yes

2010/07/23 Rent

expenses:rent £500.00
assets:bank:chequing

2010/07/24 Food

expenses:food £150.00
assets:bank:chequing

#+end_src

7.2.4.5 Financial Summaries

Given the ledger entries defined above in the income and expenses code blocks, we can now
refer to these using the noweb expansion directives, <<name>>. We can now define different
code blocks to generate specific reports for those transactions. Below are two examples, one
to generate a balance report and one to generate a register report of all transactions.

7.2.4.6 An overall balance summary

The overall balance of your account and expenditure with a breakdown according to category
is specified by passing the :cmdline bal argument to Ledger. This code block can now be
evaluated (C-c C-c) and the results generated by incorporating the transactions referred to
by the <<income>> and <<expenses>> lines.

#+name: balance

#+begin_src ledger :cmdline bal :noweb yes

<<income>>

<<expenses>>

#+end_src

#+results: balance

: £2653.53 assets:bank

: £1100.00 chequing

: £1553.53 savings

: £650.00 expenses

: £150.00 food

: £500.00 rent

: £-3303.53 income

: £-3.53 interest

: £-2000.00 salary

: £-1300.00 starting balances

If you want a less detailed breakdown of where your money is, you can specify the
--collapse (-n) flag (i.e. ‘:cmdline -n bal’) to tell Ledger to exclude sub-accounts in
the report.

#+begin_src ledger :cmdline -n bal :noweb yes

<<income>>

<<expenses>>

#+end_src

#+results:

: £2653.53 assets

: £650.00 expenses

: £-3303.53 income

Chapter 7: Reporting Commands 61

7.2.4.7 Generating a monthly register

You can also generate a monthly register (the reg command) by executing the following src
block. This presents a summary of transactions for each monthly period (the --monthly

(-M) argument) with a running total in the final column (which should be 0 at the end if
all the entries are correct).

#+name: monthlyregister

#+begin_src ledger :cmdline -M reg :noweb yes

<<income>>

<<expenses>>

#+end_src

#+results: monthlyregister

:2010/01/01 - 2010/01/31 assets:bank:savings £1300.00 £1300.00
: in:starting balances £-1300.00 0

:2010/07/01 - 2010/07/31 assets:bank:chequing £100.00 £100.00
: assets:bank:savings £253.53 £353.53
: expenses:food £150.00 £503.53
: expenses:rent £500.00 £1003.53
: income:interest £-3.53 £1000.00
: income:salary £-1000.00 0

:2010/08/01 - 2010/08/01 assets:bank:chequing £1000.00 £1000.00
: income:salary £-1000.00 0

We could also generate a monthly report on our assets showing how these are increasing
(or decreasing!). In this case, the final column will be the running total of the assets in our
ledger.

#+name: monthlyassetsregister

#+begin_src ledger :cmdline -M reg assets :noweb yes

<<income>>

<<expenses>>

#+end_src

#+results: monthlyassetsregister

: 2010/01/01 - 2010/01/31 assets:bank:savings £1300.00 £1300.00
: 2010/07/01 - 2010/07/31 assets:bank:chequing £100.00 £1400.00
: assets:bank:savings £253.53 £1653.53
: 2010/08/01 - 2010/08/01 assets:bank:chequing £1000.00 £2653.53

7.2.4.8 Summary

This short tutorial shows how Ledger entries can be embedded in an org file and manipulated
using Babel. However, only simple Ledger features have been illustrated; please refer to the
Ledger documentation for examples of more complex operations on a ledger.

7.2.5 The pricemap command

If you have the graphviz graph visualization package installed, ledger can generate a graph
of the relationship between your various commodities. The output file is in the “dot” format.

This is probably not very interesting, unless you have many different commodities valued
in terms of each other. For example, multiple currencies and multiple investments valued
in those currencies.

Chapter 7: Reporting Commands 62

7.2.6 The xml command

By default, Ledger uses a human-readable data format, and displays its reports in a manner
meant to be read on screen. For the purpose of writing tools which use Ledger, however, it
is possible to read and display data using XML. This section documents that format.

The general format used for Ledger data is:

<?xml version="1.0"?>

<ledger>

<xact>...</xact>

<xact>...</xact>

<xact>...</xact>...

</ledger>

The data stream is enclosed in a ledger tag, which contains a series of one or more
transactions. Each xact describes one transaction and contains a series of one or more
postings:

<xact>

<en:date>2004/03/01</en:date>

<en:cleared/>

<en:code>100</en:code>

<en:payee>John Wiegley</en:payee>

<en:postings>

<posting>...</posting>

<posting>...</posting>

<posting>...</posting>...

</en:postings>

</xact>

The date format for en:date is always YYYY/MM/DD. The en:cleared tag is optional,
and indicates whether the posting has been cleared or not. There is also an en:pending

tag, for marking pending postings. The en:code and en:payee tags both contain whatever
text the user wishes.

After the initial transaction data, there must follow a set of postings marked with
en:postings. Typically these postings will all balance each other, but if not they will
be automatically balanced into an account named ‘Unknown’.

Within the en:postings tag is a series of one or more posting’s, which have the fol-
lowing form:

<posting>

<tr:account>Expenses:Computer:Hardware</tr:account>

<tr:amount>

<value type="amount">

<amount>

<commodity flags="PT">$</commodity>

<quantity>90.00</quantity>

</amount>

</value>

</tr:amount>

</posting>

This is a basic posting. It may also begin with tr:virtual and/or tr:generated tags,
to indicate virtual and auto-generated postings. Then follows the tr:account tag, which
contains the full name of the account the posting is related to. Colons separate parent from
child in an account name.

Chapter 7: Reporting Commands 63

Lastly follows the amount of the posting, indicated by tr:amount. Within this tag is a
value tag, of which there are four different kinds, each with its own format:

1. Boolean,

2. integer,

3. amount,

4. balance.

The format of a Boolean value is true or false surrounded by a boolean tag, for
example:

<boolean>true</boolean>

The format of an integer value is the numerical value surrounded by an integer tag, for
example:

<integer>12036</integer>

The format of an amount contains two members, the commodity and the quantity. The
commodity can have a set of flags that indicate how to display it. The meaning of the flags
(all of which are optional) are:

P The commodity is prefixed to the value.

S The commodity is separated from the value by a space.

T Thousands markers are used to display the amount.

E The format of the amount is European, with period used as a thousands marker,
and comma used as the decimal point.

The actual quantity for an amount is an integer of arbitrary size. Ledger uses the GNU
multiple precision arithmetic library to handle such values. The XML format assumes the
reader to be equally capable. Here is an example amount:

<value type="amount">

<amount>

<commodity flags="PT">$</commodity>

<quantity>90.00</quantity>

</amount>

</value>

Lastly, a balance value contains a series of amounts, each with a different commodity.
Unlike the name, such a value does need to balance. It is called a balance because it sums
several amounts. For example:

<value type="balance">

<balance>

<amount>

<commodity flags="PT">$</commodity>

<quantity>90.00</quantity>

</amount>

<amount>

<commodity flags="TE">DM</commodity>

<quantity>200.00</quantity>

</amount>

</balance>

</value>

That is the extent of the XML data format used by Ledger. It will output such data if
the xml command is used, and can read the same data.

Chapter 7: Reporting Commands 64

7.2.7 prices and pricedb commands

The prices command displays the price history for matching commodities. The --average
(-A) option is useful with this report, to display the running average price, or --deviation
(-D) to show each price’s deviation from that average.

There is also a pricedb command which outputs the same information as prices, but
does so in a format that can be parsed by Ledger. This is useful for generating and tidying
up pricedb database files.

7.3 Reports about your Journals

7.3.1 accounts

The accounts command reports all of the accounts in the journal. Following the command
with a regular expression will limit the output to accounts matching the regex. The output
is sorted by name. Using the --count option will tell you how many entries use each
account.

7.3.2 payees

The payees command reports all of the unique payees in the journal. Using the --count

option will tell you how many entries use each payee. To filter the payees displayed you
must use the prefix @:

$ ledger payees @Nic

Nicolas

Nicolas BOILABUS

Oudtshoorn Municipality

Vaca Veronica

7.3.3 commodities

Report all commodities present in the journals under consideration. The output is sorted
by name. Using the --count option will tell you how many entries use each commodity.

7.3.4 tags

The tags command reports all of the tags in the journal. The output is sorted by name.
Using the --count option will tell you how many entries use each tag. Using the --values
option will report the values used by each tag.

7.3.5 xact

The xact command simplifies the creation of new transactions. It works on the principle
that 80% of all postings are variants of earlier postings. Here’s how it works:

Say you currently have this posting in your ledger file:
2004/03/15 * Viva Italiano

Expenses:Food $12.45

Expenses:Tips $2.55

Liabilities:MasterCard $-15.00

Now it’s ‘2004/4/9’, and you’ve just eaten at ‘Viva Italiano’ again. The exact amounts
are different, but the overall form is the same. With the xact command you can type:

$ ledger xact 2004/4/9 viva food 11 tips 2.50

Chapter 7: Reporting Commands 65

This produces the following output:
2004/04/09 Viva Italiano

Expenses:Food $11.00

Expenses:Tips $2.50

Liabilities:MasterCard

It works by finding a past posting matching the regular expression ‘viva’, and assuming
that any accounts or amounts specified will be similar to that earlier posting. If Ledger
does not succeed in generating a new transaction, an error is printed and the exit code is
set to ‘1’.

Here are a few more examples of the xact command, assuming the above journal trans-
action:

$ ledger xact 4/9 viva 11.50

$ ledger xact 4/9 viva 11.50 checking # (from `checking')

$ ledger xact 4/9 viva food 11.50 tips 8

$ ledger xact 4/9 viva food 11.50 tips 8 cash

$ ledger xact 4/9 viva food $11.50 tips $8 cash

$ ledger xact 4/9 viva dining "DM 11.50"

draft and entry are both synonyms of xact. entry is provided for backwards compat-
ibility with Ledger 2.X.

7.3.6 stats

stats query Provide summary information about all the postings matching query.
$ ledger stats

• Time range of all matching postings

• Unique accounts

• Postings total

• Uncleared postings

• Days since last posting

• Posts in the last 7 days

• Posts in the last 30 days

• Posts this month

7.3.7 select

select query The Command select query allows generation of SQL-like queries, e.g.,

List all postings matching the qurty. This command allows to generate SQL-like queries,
e.g.:

ledger select date,amount from posts where account=~/Income/

66

8 Command-Line Syntax

8.1 Basic Usage

This chapter describes Ledger’s features and options. You may wish to survey this to get
an overview before diving into the Chapter 2 [Ledger Tutorial], page 4, and more detailed
examples that follow.

Ledger has a very simple command-line interface, named—enticingly enough—ledger.
It supports a few reporting commands, and a large number of options for refining the output
from those commands. The basic syntax of any ledger command is:

$ ledger [OPTIONS...] COMMAND [ARGS...]

After the command word there may appear any number of arguments. For most com-
mands, these arguments are regular expressions that cause the output to relate only to
postings matching those regular expressions. For the xact command, the arguments have
a special meaning, described below.

The regular expressions arguments always match the account name that a posting refers
to. To match on the payee of the transaction instead, precede the regular expression with
‘payee’ or ‘@’. For example, the following balance command reports account totals for rent,
food and movies, but only those whose payee matches Freddie:

$ ledger bal rent food movies payee freddie

or
$ ledger bal rent food movies @freddie

There are many, many command options available with the ledger program, and it
takes a while to master them. However, none of them are required to use the basic reporting
commands.

8.2 Command-Line Quick Reference

8.2.1 Basic Reporting Commands

balance

bal Show account balances.

register

reg Show all transactions with running total.

csv Show transactions in csv format, for exporting to other programs.

print Print transactions in a format readable by ledger.

xml Produce XML output of the register command.

lisp

emacs Produce s-expression output, suitable for Emacs.

equity Print account balances as transactions.

prices Print price history for matching commodities.

pricedb Print price history for matching commodities in a format readable by ledger.

xact Generate transactions based on previous postings.

Chapter 8: Command-Line Syntax 67

8.2.2 Basic Options

--help

-h Display the man page for ledger.

--version

Print version information and exit.

--file FILE

-f FILE Read FILE as a ledger file.

--output FILE

-o FILE Redirect output to FILE.

--init-file FILE

-i FILE Specify an options file.

--import FILE

Import FILE as Python module.

--account STR

-a STR Specify default account STR for QIF file postings.

8.2.3 Report Filtering

--current

-c Display only transactions on or before the current date.

--begin DATE

-b DATE Limit the processing to transactions on or after DATE.

--end DATE

-e DATE Limit the processing to transactions before DATE.

--period PERIOD_EXPRESSION

-p PERIOD_EXPRESSION

Limit the processing to transactions in PERIOD EXPRESSION (see
Section 8.4 [Period Expressions], page 95).

--period-sort VEXPR

Sort postings within each period according to VEXPR.

--cleared

-C Display only cleared postings.

--dc Display register or balance in debit/credit format.

--uncleared

-U Display only uncleared postings.

--real

-R Display only real postings.

--actual

-L Display only actual postings, not automated ones.

--related

-r Display related postings.

Chapter 8: Command-Line Syntax 68

--budget Display how close your postings meet your budget.

--add-budget

Show unbudgeted postings.

--unbudgeted

Show only unbudgeted postings.

--forecast-while VEXPR

--forecast VEXPR

Project balances into the future.

--limit EXPR

-l EXPR Limit which postings are used in calculations by EXPR.

--amount EXPR

-t EXPR Change value expression reported in register report.

--total VEXPR

-T VEXPR Change the value expression used for “totals” column in register and balance

reports.

8.2.4 Error Checking and Calculation Options

--strict Accounts, tags or commodities not previously declared will cause warnings.

--pedantic

Accounts, tags or commodities not previously declared will cause errors.

--check-payees

Enable strict and pedantic checking for payees as well as accounts, commodities
and tags. This only works in conjunction with --strict or --pedantic.

--immediate

Instruct ledger to evaluate calculations immediately rather than lazily.

8.2.5 Output Customization

--collapse

-n Collapse transactions with multiple postings.

--subtotal

-s Report register as a single subtotal.

--by-payee

-P Report subtotals by payee.

--empty

-E Include empty accounts in the report.

--weekly

-W Report posting totals by week.

--quarterly

Report posting totals by quarter.

Chapter 8: Command-Line Syntax 69

--yearly

-Y Report posting totals by year.

--dow Report posting totals by day of week.

--sort VEXPR

-S VEXPR Sort a report using VEXPR.

--wide

-w Assume 132 columns instead of 80.

--head INT

Report the first INT postings.

--tail INT

Report the last INT postings.

--pager FILE

Direct output to FILE pager program.

--no-pager

Direct output to stdout, avoiding pager program.

--average

-A Report the average posting value.

--deviation

-D Report each posting’s deviation from the average.

--percent

-% Show subtotals in the balance report as percentages.

--pivot TAG

Produce a pivot table of the TAG type specified.

--amount-data

-j Show only the date and value columns to format the output for plots.

--plot-amount-format FORMAT_STRING

Specify the format for the plot output.

--total-data

-J Show only the date and total columns to format the output for plots.

--plot-total-format FORMAT_STRING

Specify the format for the plot output.

--display EXPR

-d EXPR Display only postings that meet the criteria in the EXPR.

--date-format DATE_FORMAT

-y DATE_FORMAT

Change the basic date format used in reports.

Chapter 8: Command-Line Syntax 70

--format FORMAT_STRING

--balance-format FORMAT_STRING

--register-format FORMAT_STRING

--prices-format FORMAT_STRING

-F FORMAT_STRING

Set the reporting format for various reports.

--anon Print the ledger register with anonymized accounts and payees, useful for filing
bug reports.

8.2.6 Grouping Options

--by-payee

-P Group postings by common payee names.

--daily

-D Group postings by day.

--weekly

-W Group postings by week.

--monthly

-M Group postings by month.

--quarterly

Group postings by quarter.

--yearly

-Y Group postings by year.

--dow Group by day of weeks.

--subtotal

-s Group postings together, similar to the balance report.

8.2.7 Commodity Reporting

--price-db FILE

Use FILE for retrieving stored commodity prices.

--price-exp INT

--leeway INT

-Z INT Set expected freshness of prices in INT minutes.

--download

-Q Download quotes using the script named getquote.

--quantity

-O Report commodity totals without conversion.

--basis

-B Report cost basis.

--market

-V Report last known market value.

--gain

-G Report net gain or loss for commodities that have a price history.

Chapter 8: Command-Line Syntax 71

8.3 Detailed Option Description

8.3.1 Global Options

Options for Ledger reports affect three separate scopes of operation: Global, Session, and
Report. In practice there is very little difference between these scopes. Ledger 3.0 contains
provisions for GUIs, which would make use of the different scopes by keeping an instance
of Ledger running in the background and running multiple sessions with multiple reports
per session.

--args-only

Ignore all environment and init-file settings and use only command-line argu-
ments to control Ledger. Useful for debugging or testing small journal files not
associated with your main financial database.

--debug CODE

undocumented! Please help by contributing documentation for this feature.
If ledger has been built with debug options this will provide extra data during
the run.

--help

-h Display the man page for ledger.

--init-file FILE

Specify the location of the init file. By default, $XDG_CONFIG_HOME,
~/.config/ledger/ledgerrc, ~/.ledgerrc and ./.ledgerrc are tried in
order.

--options

Display the options in effect for this Ledger invocation, along with their values
and the source of those values, for example:

$ ledger --options bal --cleared

===

[Global scope options]

--args-only --args-only

[Session scope options]

--file = A9349E4.dat --file

[Report scope options]

--cleared --cleared

--columns = 80 --columns

--limit = cleared --cleared

===

$15.00 Expenses

$12.45 Food

$2.55 Tips

$-15.00 Liabilities:MasterCard

0

For the source column, a value starting with a ‘-’ or ‘--’ indicated the source
was a command-line argument. If the entry starts with a ‘$’, the source was an
environment variable. If the source is ?normalize the value was set internally
by ledger, in a function called normalize_options.

Chapter 8: Command-Line Syntax 72

--script FILE

Execute a ledger script.

--trace INT

Enable tracing. The INT specifies the level of trace desired.

--verbose

-v Print detailed information on the execution of Ledger.

--verify Enable additional assertions during run-time. This causes a significant slow-
down. When combined with --debug CODE ledger will produce memory trace
information.

--verify-memory

Verify that every constructed object is properly destructed. This is for debug-
ging purposes only.

--version

Print version information and exit.

8.3.2 Session Options

Options for Ledger reports affect three separate scopes of operation: Global, Session, and
Report. In practice there is very little difference between these scopes. Ledger 3.0 contains
provisions for GUIs, which would make use of the different scopes by keeping an instance
of Ledger running in the background and running multiple sessions with multiple reports
per session.

--check-payees

Enable strict and pedantic checking for payees as well as accounts, commodities
and tags. This only works in conjunction with --strict or --pedantic.

--day-break

Break up register report of [timelog], page 99, entries that span multiple days
by day.

--decimal-comma

Direct Ledger to parse journals using the European standard comma as a dec-
imal separator, not the usual period.

--download

-Q Direct Ledger to download prices.

--file FILE

-f FILE Specify the input FILE for this invocation.

--input-date-format DATE_FORMAT

Specify the input date format for journal entries. For example,

$ ledger convert Export.csv --input-date-format "%m/%d/%Y"

Would convert the Export.csv file to ledger format, assuming the dates in the
CSV file are like 12/23/2009 (see Section 12.5.5 [Date and Time Format Codes],
page 112).

Chapter 8: Command-Line Syntax 73

--master-account STR

Prepend all account names with the argument.
$ ledger -f drewr3.dat bal --no-total --master-account HUMBUG

0 HUMBUG

$ -3,804.00 Assets

$ 1,396.00 Checking

$ 30.00 Business

$ -5,200.00 Savings

$ -1,000.00 Equity:Opening Balances

$ 6,654.00 Expenses

$ 5,500.00 Auto

$ 20.00 Books

$ 300.00 Escrow

$ 334.00 Food:Groceries

$ 500.00 Interest:Mortgage

$ -2,030.00 Income

$ -2,000.00 Salary

$ -30.00 Sales

$ 180.00 Liabilities

$ -20.00 MasterCard

$ 200.00 Mortgage:Principal

--no-aliases

Ledger does not expand any aliases if this option is specified.

--pedantic

Accounts, tags or commodities not previously declared will cause errors.

--permissive

Quiet balance assertions.

--price-db FILE

Specify the location of the price entry data file.

--price-exp INT

--leeway INT

-Z INT Set the expected freshness of price quotes, in INT minutes. That is, if the last
known quote for any commodity is older than this value, and if --download is
being used, then the Internet will be consulted again for a newer price. Other-
wise, the old price is still considered to be fresh enough.

--strict Ledger normally silently accepts any account or commodity in a posting, even
if you have misspelled a commonly used one. The option --strict changes
that behavior. While running with --strict, Ledger interprets all cleared
transactions as correct, and if it encounters a new account or commodity (same
as a misspelled commodity or account) it will issue a warning giving you the
file and line number of the problem.

--recursive-aliases

Normally, ledger only expands aliases once. With this option, ledger tries to
expand the result of alias expansion recursively, until no more expansions apply.

--time-colon

The --time-colon option will display the value for a seconds based commodity
as real hours and minutes.

Chapter 8: Command-Line Syntax 74

For example 8100 seconds by default will be displayed as 2.25 whereas with the
--time-colon option they will be displayed as 2:15.

--value-expr VEXPR

Set a global value expression annotation.

8.3.3 Report Options

Options for Ledger reports affect three separate scopes of operation: Global, Session, and
Report. In practice there is very little difference between these scopes. Ledger 3.0 contains
provisions for GUIs, which would make use of the different scopes by keeping an instance
of Ledger running in the background and running multiple sessions with multiple reports
per session.

--abbrev-len INT

Set the minimum length an account can be abbreviated to if it doesn’t fit inside
the account-width. If INT is zero, then the account name will be truncated
on the right. If INT is greater than account-width then the account will be
truncated on the left, with no shortening of the account names in order to fit
into the desired width.

--account STR

Prepend STR to all accounts reported. That is, the option ‘--account
Personal’ would tack ‘Personal:’ to the beginning of every account reported
in a balance report or register report.

--account-width INT

Set the width of the account column in the register report to INT characters.

--actual

-L Report only real transactions, ignoring all automated or virtual transactions.

--add-budget

Show only unbudgeted postings.

--align-intervals

Use the begin time of a period expression as the start of its intervals, if specified
(see Section 8.4 [Period Expressions], page 95). For example with a period
expression of "weekly from 2009/01/10" then the begin time of "2009/01/10
will be used as the start of the weekly intervals. Overrides ‘--start-of-week
INT’.

--amount EXPR

-t EXPR Apply the given value expression to the posting amount (see Chapter 11 [Value
Expressions], page 100). Using --amount EXPR you can apply an arbitrary
transformation to the postings.

--amount-data

-j On a register report print only the date and amount of postings. Useful for
graphing and spreadsheet applications.

--amount-width INT

Set the width in characters of the amount column in the register report.

Chapter 8: Command-Line Syntax 75

--anon Anonymize registry output, mostly for sending in bug reports.

--auto-match

When generating a ledger transaction from a CSV file using the convert com-
mand, automatically match an account from the Ledger journal.

--aux-date

--effective

Show auxiliary dates for all calculations (see Section 5.22.7 [Effective Dates],
page 46).

--average

-A Print average values over the number of transactions instead of running totals.

--average-lot-prices

Report the average price at which each commodity was purchased in a balance
report.

--balance-format FORMAT_STRING

Specify the format to use for the balance report (see Chapter 12 [Format
Strings], page 109). The default is:

"%(justify(scrub(display_total), 20, -1, true, color))"

" %(!options.flat ? depth_spacer : \"\")"

"%-(ansify_if(partial_account(options.flat), blue if color))\n%/"

"%$1\n%/"

"--------------------\n"

--base Reduce convertible commodities down the bottom of the conversion, e.g. dis-
play time in seconds. This also applies to custom commodity conversions (see
Section 3.4.2 [Commodity equivalences], page 12).

--basis

-B

--cost Report the cost basis on all posting.

--begin DATE

Specify the start DATE of all calculations. Transactions before that date will
be ignored.

--bold-if VEXPR

Print the entire line in bold if the given value expression is true (see Chapter 11
[Value Expressions], page 100).

$ ledger reg Expenses --begin Dec --bold-if "amount>100"

list all transactions since the beginning of December and print in bold any
posting greater than $100.

--budget Only display budgeted items. In a register report this displays transactions
in the budget, in a balance report this displays accounts in the budget (see
Chapter 9 [Budgeting and Forecasting], page 97).

--budget-format FORMAT_STRING

Specify the format to use for the budget report (see Chapter 12 [Format
Strings], page 109). The default is:

"%(justify(scrub(get_at(display_total, 0)), 12, -1, true, color))"

Chapter 8: Command-Line Syntax 76

" %(justify(-scrub(get_at(display_total, 1)), 12, "

" 12 + 1 + 12, true, color))"

" %(justify(scrub(get_at(display_total, 1) + "

" get_at(display_total, 0)), 12, "

" 12 + 1 + 12 + 1 + 12, true, color))"

" %(ansify_if("

" justify((get_at(display_total, 1) ? "

" (100% * quantity(scrub(get_at(display_total, 0)))) / "

" -quantity(scrub(get_at(display_total, 1))) : 0), "

" 5, -1, true, false),"

" magenta if (color and get_at(display_total, 1) and "

" (abs(quantity(scrub(get_at(display_total, 0))) / "

" quantity(scrub(get_at(display_total, 1)))) >= 1))))"

" %(!options.flat ? depth_spacer : \"\")"

"%-(ansify_if(partial_account(options.flat), blue if color))\n"

"%/%$1 %$2 %$3 %$4\n%/"

"%(prepend_width ? \" \" * int(prepend_width) : \"\")"

"------------ ------------ ------------ -----\n"

--by-payee

-P Group the register report by payee.

--cleared

-C Consider only transactions that have been cleared for display and calculation.

--cleared-format FORMAT_STRING

Specify the format to use for the cleared report (see Chapter 12 [Format
Strings], page 109). The default is:

"%(justify(scrub(get_at(total_expr, 0)), 16, 16 + prepend_width, "

" true, color)) %(justify(scrub(get_at(total_expr, 1)), 18, "

" 36 + prepend_width, true, color))"

" %(latest_cleared ? format_date(latest_cleared) : \" \")"

" %(!options.flat ? depth_spacer : \"\")"

"%-(ansify_if(partial_account(options.flat), blue if color))\n%/"

"%$1 %$2 %$3\n%/"

"%(prepend_width ? \" \" * prepend_width : \"\")"

"---------------- ---------------- ---------\n"

--collapse

-n By default ledger prints all accounts in an account tree. With --collapse it
prints only the top level account specified.

--collapse-if-zero

Collapse the account display only if it has a zero balance.

--color

--ansi Use color if the terminal supports it.

--columns INT

Specify the width of the register report in characters.

--count Direct ledger to report the number of items when appended to the commodities,
accounts or payees command.

--csv-format FORMAT_STRING

Specify the format to use for the csv report (see Chapter 12 [Format Strings],
page 109). The default is:

"%(quoted(date)),"

Chapter 8: Command-Line Syntax 77

"%(quoted(code)),"

"%(quoted(payee)),"

"%(quoted(display_account)),"

"%(quoted(commodity(scrub(display_amount)))),"

"%(quoted(quantity(scrub(display_amount)))),"

"%(quoted(cleared ? \"*\" : (pending ? \"!\" : \"\"))),"

"%(quoted(join(note | xact.note)))\n"

--current

Shorthand for ‘--limit "date <= today"’.

--daily

-D Shorthand for ‘--period "daily"’.

--date EXPR

Transform the date of the transaction using EXPR.

--date-format DATE_FORMAT

-y DATE_FORMAT

Specify the format ledger should use to read and print dates (see Section 12.5.5
[Date and Time Format Codes], page 112).

--date-width INT

Specify the width, in characters, of the date column in the register report.

--datetime-format DATETIME_FORMAT

Specify the format ledger should use to print datetimes.

--dc Display register or balance in debit/credit format If you use --dc with either the
register (reg) or balance (bal) commands, you will now get extra columns.
The register goes from this:

12-Mar-10 Employer Assets:Cash $100 $100

Income:Employer $-100 0

12-Mar-10 KFC Expenses:Food $20 $20

Assets:Cash $-20 0

12-Mar-10 KFC - Rebate Assets:Cash $5 $5

Expenses:Food $-5 0

12-Mar-10 KFC - Food & Reb.. Expenses:Food $20 $20

Expenses:Food $-5 $15

Assets:Cash $-15 0

To this:
12-Mar-10 Employer Assets:Cash $100 0 $100

In:Employer 0 $100 0

12-Mar-10 KFC Expens:Food $20 0 $20

Assets:Cash 0 $20 0

12-Mar-10 KFC - Rebate Assets:Cash $5 0 $5

Expens:Food 0 $5 0

12-Mar-10 KFC - Food &.. Expens:Food $20 0 $20

Expens:Food 0 $5 $15

Assets:Cash 0 $15 0

Where the first column is debits, the second is credits, and the third is the
running total. Only the running total may contain negative values.

For the balance report without --dc:
$70 Assets:Cash

$30 Expenses:Food

Chapter 8: Command-Line Syntax 78

$-100 Income:Employer

0

And with --dc it becomes this:

$105 $35 $70 Assets:Cash

$40 $10 $30 Expenses:Food

0 $100 $-100 Income:Employer

--

$145 $145 0

--depth INT

Limit the depth of displayed accounts in balance and register reports. Any
accounts of greater depth are folded into their parent at the specified level.
For example with ‘--depth 2’ the account ‘Expenses:Entertainment’ would
be folded into ‘Expenses:Entertainment:Dining’ for display. Importantly,
this is a display predicate, which means it only affects display, not the total
calculations.

--deviation

Report each posting’s deviation from the average. It is only meaningful in the
register and prices reports.

--display EXPR

Display only lines that satisfy the expression EXPR.

--display-amount EXPR

Apply a transformation to the displayed amount. This happens after calcula-
tions occur.

--display-total EXPR

Apply a transformation to the displayed total. This happens after calculations
occur.

--dow

--days-of-week

Group transactions by the day of the week.

$ ledger reg Expenses --dow --collapse

Will print all Expenses totaled for each day of the week.

--empty

-E Include empty accounts in the report and in average calculations.

--end DATE

Specify the end DATE for a transaction to be considered in the report. All
transactions on or after this date are ignored.

--equity Related to the equity command (see Section 7.1.2 [The equity command],
page 54). Gives current account balances in the form of a register report.

--exact Report beginning and ending of periods by the date of the first and last posting
occurring in that period.

Chapter 8: Command-Line Syntax 79

--exchange "COMMODITY [, COMMODITY, ...]"

-X "COMMODITY [, COMMODITY, ...]"

Display values in terms of the given COMMODITY. If multiple commodities
are given, values in a listed commodity will remain as-is, and others will be
displayed in the first listed commodity they can be converted to.

$ ledger balance assets

100 EUR

100 PHP

100 USD Assets

100 EUR EUR Bank

100 PHP PHP Bank

100 USD USD Bank

100 EUR

100 PHP

100 USD

$ ledger balance assets --exchange PHP

11382 PHP Assets

5801 PHP EUR Bank

100 PHP PHP Bank

5481 PHP USD Bank

11382 PHP

$ ledger balance assets --exchange "PHP, EUR"

100 EUR

5581 PHP Assets

100 EUR EUR Bank

100 PHP PHP Bank

5481 PHP USD Bank

100 EUR

5581 PHP

The latest available price is used. The syntax -X COMMODITY1:COMMODITY2

displays values in COMMODITY1 in terms of COMMODITY2 using the latest
available price, but will not automatically convert any other commodities to
COMMODITY2. Multiple -X arguments may be used on a single command-
line (as in -X COMMODITY1:COMMODITY2 -X COMMODITY3:COMMODITY2), which is
particularly useful for situations where many prices are available for reporting
in terms of COMMODITY2, but only a few should be displayed that way.

--flat Force the full names of accounts to be used in the balance report. The balance
report will not use an indented tree.

--force-color

Output TTY color codes even if the TTY doesn’t support them. Useful for
TTYs that don’t advertise their capabilities correctly.

--force-pager

Force Ledger to paginate its output.

--forecast-while VEXPR

--forecast VEXPR

Continue forecasting while VEXPR is true.

Chapter 8: Command-Line Syntax 80

--forecast-years INT

Forecast at most INT years into the future.

--format FORMAT_STRING

-F FORMAT_STRING

Use the given format string to print output.

--gain

-G

--change Report on gains using the latest available prices.

--generated

Include auto-generated postings (such as those from automated transactions)
in the report, in cases where you normally wouldn’t want them.

--group-by EXPR

Group transactions together in the register report. EXPR can be anything,
although most common would be payee or commodity. The tags() function is
also useful here.

--group-title-format FORMAT_STRING

Set the format for the headers that separates the report sections of a grouped
report. Only has an effect with a --group-by EXPR register report.

$ ledger reg Expenses --group-by "payee" --group-title-format "------------------------ %-20(value) ---------------------\n"

------------------------ 7-Eleven ---------------------

2011/08/13 7-Eleven Expenses:Auto:Misc $ 5.80 $ 5.80

------------------------ AAA Dues ---------------------

2011/06/02 AAA Dues Expenses:Auto:Misc $ 215.00 $ 215.00

------------------------ ABC Towing and Wrecking ---------------------

2011/03/17 ABC Towing and Wrec.. Expenses:Auto:Hobbies $ 48.20 $ 48.20

...

--hashes ALGO

Records the chained hash of each transaction in a Hash metadata value, accord-
ing to the hashing algorithm given by the ALGO argument (at the moment,
only sha512 is supported). To use this, record the Hash metadata explicitly
in some of your transactions; these will be checked against the hashes calcu-
lated internally, and if they do not match, an error is reported. You may also
write just a prefix of the Hash, which is less verbose but still gives quite good
assurance.

The support algorithms are:

sha512 Use the SHA512 hashing algorithm.

sha512_half

Same as SHA512, but record only the first 256 bits.

Somewhat like balance assertions, which give assurance that previous posting
amounts are correct, these Hash tags give assurance that all previous journal
entries (in parse order) are unchanged (or at least, their combined hash matches
the Hash tag currently appearing in the journal).

Chapter 8: Command-Line Syntax 81

These hashes depend on the hashes of previous transactions, such that the single
hash value of the final transaction is sufficient to guarantee the shape of the
entire history leading up to it.

The other details that the hash depends on are the following details from each
posting in the transaction:

• fullname of the account

• amount value

In addition, these details are hashed from the transaction itself:

• actual date

• auxiliary date (if provided; also called effective date)

• code (if provided)

• payee

This list also means that changes in the comments of postings or transactions,
or in the ordering of the postings within a transaction, will not affect the hash.
The ordering of the transactions does matter, however, the same way as it does
for balance assertions.

--head INT

--first INT

Print the first INT entries. Opposite of --tail INT.

--historical

-H Value commodities at the time of their acquisition.

--immediate

Evaluate calculations immediately rather than lazily.

--inject Use Expected amounts in calculations. In case you know what amount a trans-
action should be, but the actual transaction has the wrong value you can use
metadata to specify the expected amount:

2012-03-12 Paycheck

Income $-990 ; Expected:: $-1000.00

Checking

Then using the command ledger reg --inject=Expected Income would treat
the transaction as if the “Expected Value” was actual.

--invert Change the sign of all reported values.

--limit EXPR

-l EXPR Only transactions that satisfy EXPR are considered in calculations and for
display.

--lot-dates

Report the date on which each commodity in a balance report was purchased.

--lot-notes

--lot-tags

Report the tag attached to each commodity in a balance report.

Chapter 8: Command-Line Syntax 82

--lot-prices

Report the price at which each commodity in a balance report was purchased.

--lots Report the date and price at which each commodity was purchased in a balance
report.

--lots-actual

Preserve the uniqueness of commodities so they aren’t merged during reporting
without printing the lot annotations.

--market

-V Use the latest market value for all commodities.

--meta TAG

In the register report, prepend the transaction with the value of the given TAG.

--meta-width INT

Specify the width of the Meta column used for the --meta TAG options.

--monthly

-M Synonym for ‘--period "monthly"’.

--no-aliases

Aliases are completely ignored.

--no-color

Suppress any color TTY output.

--no-pager

Direct output to stdout, avoiding pager program.

--no-revalued

Stop Ledger from showing <Revalued> postings. This option is useful in com-
bination with the --exchange or --market option.

--no-rounding

Don’t output ‘<Adjustment>’ postings. Note that this will cause the running
total to often not add up! Its main use is for --amount-data (-j) and --total-
data (-J) reports.

--no-titles

Suppress the output of group titles.

--no-total

Suppress printing the final total line in a balance report.

--now DATE

Define the current date in case you want to calculate in the past or future using
--current.

--only FIXME

This is a postings predicate that applies after certain transforms have been
executed, such as periodic gathering.

--output FILE

Redirect the output of ledger to the file defined in FILE.

Chapter 8: Command-Line Syntax 83

--pager FILE

Direct output to FILE pager program.

--payee VEXPR

Sets a value expression for formatting the payee. In the register report this
prevents the second entry from having a date and payee for each transaction.

--payee-width INT

Set the number of columns dedicated to the payee in the register report to INT.

--pending

Use only postings that are marked pending.

--percent

-% Calculate the percentage value of each account in balance reports. Only works
for accounts that have a single commodity.

--period PERIOD_EXPRESSION

Define a period expression that sets the time period during which transactions
are to be accounted. For a register report only the transactions that satisfy
the period expression with be displayed. For a balance report only those
transactions will be accounted in the final balances.

--pivot TAG

Produce a balance pivot report around the given TAG. For example, if you
have multiple cars and track each fuel purchase in ‘Expenses:Auto:Fuel’ and
tag each fuel purchase with a tag identifying which car the purchase was for ‘;
Car: Prius’, then the command:

$ ledger bal Fuel --pivot "Car" --period "this year"

$ 3491.26 Car

$ 1084.22 M3:Expenses:Auto:Fuel

$ 149.65 MG V11:Expenses:Auto:Fuel

$ 621.89 Prius:Expenses:Auto:Fuel

$ 1635.50 Sienna:Expenses:Auto:Fuel

$ 42.69 Expenses:Auto:Fuel

$ 3533.95

See Section 5.7.2 [Metadata values], page 34.

--plot-amount-format FORMAT_STRING

Define the output format for an amount data plot. See Section 6.4.2 [Visualizing
with Gnuplot], page 53.

--plot-total-format FORMAT_STRING

Define the output format for a total data plot. See Section 6.4.2 [Visualizing
with Gnuplot], page 53.

--prepend-format FORMAT_STRING

Prepend STR to every line of the output.

--prepend-width INT

Reserve INT spaces at the beginning of each line of the output.

--price

-I Use the price of the commodity purchase for performing calculations.

Chapter 8: Command-Line Syntax 84

--pricedb-format FORMAT_STRING

Set the format expected for the historical price file.

--prices-format FORMAT_STRING

Set the format for the prices report.

--primary-date

--actual-dates

Show primary dates for all calculations (see Section 5.22.7 [Effective Dates],
page 46).

--quantity

-O Report commodity totals (this is the default).

--quarterly

Synonym for ‘--period "quarterly"’.

--raw In the print report, show transactions using the exact same syntax as specified
by the user in their data file. Don’t do any massaging or interpreting. This can
be useful for minor cleanups, like just aligning amounts.

--real

-R Account using only real transactions ignoring virtual and automatic transac-
tions.

--register-format FORMAT_STRING

Define the output format for the register report.

--related

In a register report show the related account. This is the other side of the
transaction.

--related-all

Show all postings in a transaction, similar to --related but show both sides
of each transaction.

--revalued

Report discrepancy in values for manual reports by inserting <Revalued> post-
ings. This is implied when using the --exchange or --market option.

--revalued-only

Show only <Revalued> postings.

--revalued-total FIXME

Display the sum of the revalued postings as the running total, which serves to
show unrealized capital in a gain/losses report.

--rich-data

--detail When generating a ledger transaction from a CSV file using the convert com-
mand, add CSV, Imported, and UUID metadata.

--seed INT

Set the random seed to INT for the generate command. Used as part of
development testing.

Chapter 8: Command-Line Syntax 85

--sort VEXPR

-S VEXPR Sort the register report based on the value expression given to sort.

--sort-all FIXME

undocumented! Please help by contributing documentation for this feature.

--sort-xacts VEXPR

--period-sort VEXPR

Sort the postings within transactions using the given value expression.

--start-of-week INT

Tell ledger to use a particular day of the week to start its “weekly” summary.
‘--start-of-week=1’ specifies Monday as the start of the week. Can be over-
riden by ‘--align-intervals’.

--subtotal

-s Cause all transactions in a register report to be collapsed into a single, subto-
taled transaction.

--tail INT

--last INT

Report only the last INT entries. Only useful in a register report.

--time-report

Add two columns to the balance report to show the earliest checkin and checkout
times for timelog entries.

--total VEXPR

-T VEXPR Define a value expression used to calculate the total in reports.

--total-data

-J Show only dates and totals to format the output for plots.

--total-width INT

Set the width of the total field in the register report.

--truncate CODE

Indicates how truncation should happen when the contents of columns exceed
their width. Valid arguments are ‘leading’, ‘middle’, and ‘trailing’. The
default is smarter than any of these three, as it considers sub-names within the
account name (that style is called “abbreviate”).

--unbudgeted

Show only unbudgeted postings.

--uncleared

-U Use only uncleared transactions in calculations and reports.

--unrealized

Show generated unrealized gain and loss accounts in the balance report.

--unrealized-gains STR

Allow the user to specify what account name should be used for unrealized
gains. Defaults to ‘"Equity:Unrealized Gains"’. Often set in one’s init file
to change the default.

Chapter 8: Command-Line Syntax 86

--unrealized-losses STR

Allow the user to specify what account name should be used for unrealized
losses. Defaults to ‘"Equity:Unrealized Losses"’. Often set in one’s init file
to change the default.

--unround

Perform all calculations without rounding and display results to full precision.

--values Shows the values used by each tag when used in combination with the tags

command.

--weekly

-W Synonym for ‘--period "weekly"’.

--wide Let the register report use 132 columns instead of 80 (the default). Identical to
‘--columns "132"’.

--yearly

-Y Synonym for ‘--period "yearly"’.

8.3.4 Basic options

These are the most basic command options. Most likely, the user will want to set them
using environment variables (see Section 8.3.8 [Environment variables], page 95), instead of
using actual command-line options:

--help

-h Display the man page for ledger.

--version

Print the current version of ledger and exits. This is useful for sending bug
reports, to let the author know which version of ledger you are using.

--file FILE

-f FILE Read FILE as a ledger file. FILE can be ‘-’ which is a synonym for ‘/dev/stdin’.
This command may be used multiple times. Typically, the environment variable
LEDGER_FILE is set, rather than using this command-line option.

--output FILE

-o FILE Redirect output from any command to FILE. By default, all output goes to
standard output.

--init-file FILE

-i FILE Causes FILE to be read by ledger before any other ledger file. This file may not
contain any postings, but it may contain option settings. To specify options in
the init file, use the same syntax as on the command-line, but put each option
on its own line. Here is an example init file:

--price-db ~/finance/.pricedb

--wide

; ~/.ledgerrc ends here

Option settings on the command-line or in the environment always take prece-
dence over settings in the init file.

--account STR

-a STR Specify the default account which QIF file postings are assumed to relate to.

Chapter 8: Command-Line Syntax 87

8.3.5 Report filtering

These options change which postings affect the outcome of a report, in ways other than just
using regular expressions:

--current

-c Display only transactions occurring on or before the current date.

--begin DATE

-b DATE Constrain the report to transactions on or after DATE. Only transactions after
that date will be calculated, which means that the running total in the balance
report will always start at zero with the first matching transaction. (Note: This
is different from using --display EXPR to constrain what is displayed).

--end DATE

-e DATE Constrain the report so that transactions on or after DATE are not considered.

--period PERIOD_EXPRESSION

-p PERIOD_EXPRESSION

Set the reporting period to STR. This will subtotal all matching transactions
within each period separately, making it easy to see weekly, monthly, quarterly,
etc., posting totals. A period string can even specify the beginning and end of
the report range, using simple terms like ‘last June’ or ‘next month’. For more
details on period expressions, see Section 8.4 [Period Expressions], page 95.

--period-sort VEXPR

Sort the postings within each reporting period using the value expression EXPR.
This is most often useful when reporting monthly expenses, in order to view
the highest expense categories at the top of each month:

$ ledger -M --period-sort total reg ^Expenses

--cleared

-C Display only postings whose transaction has been marked “cleared” (by placing
an asterisk to the right of the date).

--uncleared

-U Display only postings whose transaction has not been marked “cleared” (i.e., if
there is no asterisk to the right of the date).

--real

-R Display only real postings, not virtual. (A virtual posting is indicated by sur-
rounding the account name with parentheses or brackets; see Section 5.8 [Vir-
tual postings], page 36, for more information).

--actual

-L Display only actual postings, and not those created by automated transactions.

--related

-r Display postings that are related to whichever postings would otherwise have
matched the filtering criteria. In the register report, this shows where money
went to, or the account it came from. In the balance report, it shows all the
accounts affected by transactions having a related posting. For example, if a
file had this transaction:

2004/03/20 Safeway

Chapter 8: Command-Line Syntax 88

Expenses:Food $65.00

Expenses:Cash $20.00

Assets:Checking $-85.00

And the register command was:
$ ledger -f example.dat -r register food

The following would be printed, showing the postings related to the posting
that matched:

04-Mar-20 Safeway Expenses:Cash $20.00 $20.00

Assets:Checking $-85.00 $-65.00

--budget Useful for displaying how close your postings meet your budget. --add-budget
also shows unbudgeted postings, while --unbudgeted shows only those.
--forecast VEXPR is a related option that projects your budget into the
future, showing how it will affect future balances. See Chapter 9 [Budgeting
and Forecasting], page 97.

--limit EXPR

-l EXPR Limit which postings take part in the calculations of a report.

--amount EXPR

-t EXPR Change the value expression used to calculate the “value” column in the
register report, the amount used to calculate account totals in the balance

report, and the values printed in the equity report. See Chapter 11 [Value
Expressions], page 100.

--total VEXPR

-T VEXPR Set the value expression used for the “totals” column in the register and
balance reports.

8.3.6 Output customization

These options affect only the output, but not which postings are used to create it:

--collapse

-n Cause transactions in a register report with multiple postings to be collapsed
into a single, subtotaled transaction.

--subtotal

-s Cause all transactions in a register report to be collapsed into a single, subto-
taled transaction.

--by-payee

-P Report subtotals by payee.

--empty

-E Include even empty accounts in the balance report.

--weekly

-W Report posting totals by the week. The week begins on whichever day of the
week begins the month containing that posting. To set a specific begin date,
use a period string, such as ‘weekly from DATE’.

--monthly

-M Report posting totals by month.

Chapter 8: Command-Line Syntax 89

--yearly

-Y Report posting totals by year. For more complex periods, use --period.

--period PERIOD_EXPRESSION

Option described above.

--dow Report posting totals for each day of the week. This is an easy way to see if
weekend spending is more than on weekdays.

--sort VEXPR

-S VEXPR Sort a report by comparing the values determined using the value expression
VEXPR. For example, using ‘-S "-abs(total)"’ in the balance report will
sort account balances from greatest to least, using the absolute value of the
total. For more on how to use value expressions, see Chapter 11 [Value Expres-
sions], page 100.

--pivot TAG

Produce a pivot table around the TAG provided. This requires meta data using
valued tags.

--wide

-w Cause the default register report to assume 132 columns instead of 80.

--head INT

Cause only the first INT transactions to be printed. This is different from using
the command-line utility head, which would limit to the first INT postings.
--tail INT outputs only the last INT transactions. Both options may be used
simultaneously. If a negative amount is given, it will invert the meaning of the
flag (instead of the first five transactions being printed, for example, it would
print all but the first five).

--pager FILE

Tell Ledger to pass its output to the given FILE pager program; very useful
when the output is especially long. This behavior can be made the default by
setting the LEDGER_PAGER environment variable.

--no-pager

Tell Ledger to not pass its output to a pager program; useful when a pager is
set by default.

--average

-A Report the average posting value.

--deviation

-D Report each posting’s deviation from the average. It is only meaningful in the
register and prices reports.

--percent

-% Show account subtotals in the balance report as percentages of the parent
account.

--amount-data

-j Change the register report so that it prints nothing but the date and the
value column, and the latter without commodities. This is only meaningful

Chapter 8: Command-Line Syntax 90

if the report uses a single commodity. This data can then be fed to other
programs, which could plot the date, analyze it, etc.

--total-data

-J Change the register report so that it prints nothing but the date and total
columns, without commodities.

--display EXPR

-d EXPR Limit which postings or accounts are actually displayed in a report. They
might still be calculated, and be part of the running total of a register report,
for example, but they will not be displayed. This is useful for seeing last month’s
checking postings, against a running balance which includes all posting values:

$ ledger -d "d>=[last month]" reg checking

The output from this command is very different from the following, whose
running total includes only postings from the last month onward:

$ ledger -p "last month" reg checking

Which is more useful depends on what you’re looking to know: the total amount
for the reporting range (using --period PERIOD_EXPRESSION (-p)), or simply
a display restricted to the reporting range (using --display EXPR (-d)).

--date-format DATE_FORMAT

-y DATE_FORMAT

Change the basic date format used by reports. The default uses a date like
‘2004/08/01’, which represents the default date format of %Y/%m/%d. To change
the way dates are printed in general, the easiest way is to put --date-format
DATE_FORMAT in the Ledger init file (or the file referred to by LEDGER_INIT).

--format FORMAT_STRING

-F FORMAT_STRING

Set the reporting format for whatever report ledger is about to make. See
Chapter 12 [Format Strings], page 109. There are also specific format commands
for each report type:

--balance-format FORMAT_STRING

Define the output format for the balance report. The default (defined in
report.h is:

"%(ansify_if(

justify(scrub(display_total), 20,

20 + int(prepend_width), true, color),

bold if should_bold))

%(!options.flat ? depth_spacer : \"\")

%-(ansify_if(

ansify_if(partial_account(options.flat), blue if color),

bold if should_bold))\n%/

%$1\n%/

%(prepend_width ? \" \" * int(prepend_width) : \"\")

--------------------\n"

--cleared-format FORMAT_STRING

Define the format for the cleared report. The default is:
"%(justify(scrub(get_at(display_total, 0)), 16, 16 + int(prepend_width),

true, color)) %(justify(scrub(get_at(display_total, 1)), 18,

Chapter 8: Command-Line Syntax 91

36 + int(prepend_width), true, color))

%(latest_cleared ? format_date(latest_cleared) : \" \")

%(!options.flat ? depth_spacer : \"\")

%-(ansify_if(partial_account(options.flat), blue if color))\n%/

%$1 %$2 %$3\n%/

%(prepend_width ? \" \" * int(prepend_width) : \"\")

---------------- ---------------- ---------\n"

--register-format FORMAT_STRING

Define the output format for the register report. The default (defined in
report.h is:

"%(ansify_if(

ansify_if(justify(format_date(date), int(date_width)),

green if color and date > today),

bold if should_bold))

%(ansify_if(

ansify_if(justify(truncated(payee, int(payee_width)), int(payee_width)),

bold if color and !cleared and actual),

bold if should_bold))

%(ansify_if(

ansify_if(justify(truncated(display_account, int(account_width),

int(abbrev_len)), int(account_width)),

blue if color),

bold if should_bold))

%(ansify_if(

justify(scrub(display_amount), int(amount_width),

3 + int(meta_width) + int(date_width) + int(payee_width)

+ int(account_width) + int(amount_width) + int(prepend_width),

true, color),

bold if should_bold))

%(ansify_if(

justify(scrub(display_total), int(total_width),

4 + int(meta_width) + int(date_width) + int(payee_width)

+ int(account_width) + int(amount_width) + int(total_width)

+ int(prepend_width), true, color),

bold if should_bold))\n%/

%(justify(\" \", int(date_width)))

%(ansify_if(

justify(truncated(has_tag(\"Payee\") ? payee : \" \",

int(payee_width)), int(payee_width)),

bold if should_bold))

%$3 %$4 %$5\n"

--csv-format FORMAT_STRING

Set the format for csv reports. The default is:
"%(quoted(date)),

%(quoted(code)),

%(quoted(payee)),

%(quoted(display_account)),

%(quoted(commodity(scrub(display_amount)))),

%(quoted(quantity(scrub(display_amount)))),

%(quoted(cleared ? \"*\" : (pending ? \"!\" : \"\"))),

%(quoted(join(note | xact.note)))\n"

--plot-amount-format FORMAT_STRING

Set the format for amount plots, using the --amount-data (-j) option. The
default is:

"%(format_date(date, \"%Y-%m-%d\")) %(quantity(scrub(display_amount)))\n"

Chapter 8: Command-Line Syntax 92

--plot-total-format FORMAT_STRING

Set the format for total plots, using the --total-data (-J) option. The default
is:

"%(format_date(date, \"%Y-%m-%d\")) %(quantity(scrub(display_total)))\n"

--pricedb-format FORMAT_STRING

Set the format expected for the historical price file. The default is:
"P %(datetime) %(display_account) %(scrub(display_amount))\n"

--prices-format FORMAT_STRING

Set the format for the prices report. The default is:
"%(date) %-8(display_account) %(justify(scrub(display_amount), 12,

2 + 9 + 8 + 12, true, color))\n"

8.3.7 Commodity reporting

These options affect how commodity values are displayed:

--price-db FILE

Set the file that is used for recording downloaded commodity prices. It is always
read on startup, to determine historical prices. Other settings can be placed in
this file manually, to prevent downloading quotes for a specific commodity, for
example. This is done by adding a line like the following:

; Don't download quotes for the dollar, or timelog values

N $

N h

Note: Ledger NEVER writes output to files. You are responsible for updating
the price-db file. The best way is to have your price download script maintain
this file.

The format of the file can be changed by telling ledger to use the --pricedb-

format FORMAT_STRING you define.

--price-exp INT

--leeway INT

-Z INT Set the expected freshness of price quotes, in INT minutes. That is, if the last
known quote for any commodity is older than this value, and if --download is
being used, then the Internet will be consulted again for a newer price. Other-
wise, the old price is still considered to be fresh enough.

--download

-Q Cause quotes to be automagically downloaded, as needed, by running a script
named getquote and expecting that script to return a value understood by
ledger. A sample implementation of a getquote script, implemented in Perl,
is provided in the distribution. Downloaded quote price are then appended to
the price database, usually specified using the environment variable LEDGER_

PRICE_DB.

There are several different ways that ledger can report the totals it displays. The most
flexible way to adjust them is by using value expressions, and the --amount EXPR (-t) and
--total VEXPR (-T) options. However, there are also several “default” reports, which will
satisfy most users’ basic reporting needs:

Chapter 8: Command-Line Syntax 93

--quantity

-O Report commodity totals (this is the default).

--basis

-B Report the cost basis for all postings.

--market

-V Use the last known value for commodities to calculate final values.

--gain

-G Report the net gain/loss for all commodities in the report that have a price
history.

Often you will be more interested in the value of your entire holdings, in your preferred
currency. It might be nice to know you hold 10,000 shares of PENNY, but you are more
interested in whether or not that is worth $1000.00 or $10,000.00. However, the current
day value of a commodity can mean different things to different people, depending on the
accounts involved, the commodities, the nature of the transactions, etc.

When you specify --market (-V), or --exchange COMMODITY (-X), you are requesting
that some or all of the commodities be valuated as of today (or whatever --now DATE is set
to). But what does such a valuation mean? This meaning is governed by the presence of a
VALUE meta-data property, whose content is an expression used to compute that value.

If no VALUE property is specified, each posting is assumed to have a default, as if you’d
specified a global, automated transaction as follows:

= expr true

; VALUE:: market(amount, date, exchange)

This definition emulates the present day behavior of --market (-V) and --exchange

COMMODITY (-X) (in the case of ‘-X’, the requested commodity is passed via the string
‘exchange’ above).

One thing many people have wanted to do is to fixate the valuation of old European
currencies in terms of the Euro after a certain date:

= expr commodity == "DM"

; VALUE:: date < [Jun 2008] ? market(amount, date, exchange) : 1.44 EUR

This says: If --now DATE is some old date, use market prices as they were at that time;
but if --now DATE is past June 2008, use a fixed price for converting Deutsche Mark to
Euro.

Or how about never re-valuating commodities used in Expenses, since they cannot have
a different future value:

= /^Expenses:/

; VALUE:: market(amount, post.date, exchange)

This says the future valuation is the same as the valuation at the time of posting.
post.date equals the posting’s date, while just ’date’ is the value of --now DATE (defaults
to today).

Or how about valuating miles based on a reimbursement rate during a specific time
period:

= expr commodity == "miles" and date >= [2007] and date < [2008]

; VALUE:: market($1.05, date, exchange)

Chapter 8: Command-Line Syntax 94

In this case, miles driven in 2007 will always be valuated at $1.05 each. If you use
‘-X EUR’ to expressly request all amounts in Euro, Ledger shall convert $1.05 to Euro by
whatever means are appropriate for dollars.

Note that you can have a valuation expression specific to a particular posting or trans-
action, by overriding these general defaults using specific meta-data:

2010-12-26 Example

Expenses:Food $20

; Just to be silly, always valuate *these* $20 as 30 DM, no matter what

; the user asks for with -V or -X

; VALUE:: 30 DM

Assets:Cash

This example demonstrates that your value expression should be as symbolic as possible,
using terms like ’amount’ and ’date’, rather than specific amounts and dates. Also, you
should pass the amount along to the function ’market’ so it can be further revalued if the
user has asked for a specific currency.

Or, if it better suits your accounting, you can be less symbolic, which allows you to
report most everything in EUR if you use ‘-X EUR’, except for certain accounts or postings
which should always be valuated in another currency. For example:

= /^Assets:Brokerage:CAD$/

; Always report the value of commodities in this account in

; terms of present day dollars, despite what was asked for

; on the command-line VALUE:: market(amount, date, ‘$’)

Ledger presently has no way of handling such things as FIFO and LIFO.

If you specify an unadorned commodity name, like AAPL, it will balance against itself.
If --lots are not being displayed, then it will appear to balance against any lot of AAPL.

If you specify an adorned commodity, like AAPL {$10.00}, it will also balance against
itself, and against any AAPL if --lots is not specified. But if you do specify --lot-prices,
for example, then it will balance against that specific price for AAPL.

Normally when you use --exchange COMMODITY (-X) to request that amounts be re-
ported in a specific commodity, Ledger uses these values:

• Register Report For the register report, use the value of that commodity on the date
of the posting being reported, with a ‘<Revalued>’ posting added at the end if today’s
value is different from the value of the last posting.

• Balance Report For the balance report, use the value of that commodity as of today.

You can now specify --historical (-H) to ask that all valuations for any amount be
done relative to the date that amount was encountered.

You can also now use --exchange COMMODITY (-X) (and --historical (-H)) in con-
junction with --basis (-B) and --price (-I), to see valuation reports of just your basis
costs or lot prices.

Finally, sometimes, you may seek to only report one (or some subset) of the commodities
in terms of another commodity. In this situation, you can use the syntax --exchange

COMMODITY1:COMMODITY2 to request that ledger always display COMMODITY1 in terms of
COMMODITY2, but you want no other commodities to be automatically displayed in terms
of COMMODITY2 without additional --exchange options. For example, if you wanted to
report EUR and BTC in terms of USD, but report all other commodities without conversion
to USD, you could use: --exchange EUR:USD --exchange BTC:USD.

Chapter 8: Command-Line Syntax 95

8.3.8 Environment variables

Every option to ledger may be set using an environment variable if the option has a long
name. For example setting the environment variable ‘LEDGER_DATE_FORMAT="%d.%m.%Y"’
will have the same effect as specifying ‘--date-format '%d.%m.%Y'’ on the command-line.
Options on the command-line always take precedence over environment variable settings,
however.

Note that you may also permanently specify option values by placing option settings in
the file ~/.ledgerrc one option per line, for example:

--pager /bin/cat

--date-format %d.%m.%Y

8.4 Period Expressions

A period expression indicates a span of time, or a reporting interval, or both. Ledger’s end
dates are always exclusive, imagine the date is followed by 00:00:00 time. They are instants
in time not entire days. The full syntax is:

[INTERVAL] [BEGIN] [END]

The optional INTERVAL part may be any one of:
every day

every week

every month

every quarter

every year

every N days # N is any integer

every N weeks

every N months

every N quarters

every N years

daily

weekly

biweekly

monthly

bimonthly

quarterly

yearly

After the interval, a begin time, end time, both or neither may be specified. As for the
begin time, it can be either of:

from <SPEC>

since <SPEC>

The end time can be either of:
to <SPEC>

until <SPEC>

Where SPEC can be any of:
2004

2004/10

2004/10/1

10/1

october

oct

this week # or day, month, quarter, year

next week

Chapter 8: Command-Line Syntax 96

last week

The beginning and ending can be given at the same time, if it spans a single period. In
that case, just use SPEC by itself. In that case, the period ‘oct’, for example, will cover
all the days in October. The possible forms are:

<SPEC>

in <SPEC>

Intervals begin at the start of the week, first day of the month, quarter or year. This
can be overridden by specifying --align-intervals which will instead use the begin time
if specified.

Here are a few examples of period expressions:
monthly

monthly in 2004

weekly from oct

weekly from last month

from sep to oct

from 10/1 to 10/5

monthly until 2005

monthly from 2005/04/06

from apr

until nov

last oct

weekly last august

97

9 Budgeting and Forecasting

9.1 Budgeting

Keeping a budget allows you to pay closer attention to your income and expenses, by
reporting how far your actual financial activity is from your expectations.

To start keeping a budget, put some periodic transactions (see Section 5.22.8 [Periodic
Transactions], page 47) at the top of your ledger file. A periodic transaction is almost
identical to a regular transaction, except that it begins with a tilde and has a period
expression in place of a payee. For example:

~ Monthly

Expenses:Rent $500.00

Expenses:Food $450.00

Expenses:Auto:Gas $120.00

Expenses:Insurance $150.00

Expenses:Phone $125.00

Expenses:Utilities $100.00

Expenses:Movies $50.00

Expenses $200.00 ; all other expenses

Assets

~ Yearly

Expenses:Auto:Repair $500.00

Assets

These two periodic transactions give the usual monthly expenses, as well as one typical
yearly expense. For help on finding out what your average monthly expenses are for any
category, use a command like:

$ ledger -p "this year" --monthly --average register ^expenses

The reported totals are the current year’s average for each account.

Once these periodic transactions are defined, creating a budget report is as easy as adding
--budget to the command-line. For example, a typical monthly expense report would be:

$ ledger --monthly register ^expenses

To see the same report balanced against your budget, use:

$ ledger --budget --monthly register ^expenses

A budget report includes only those accounts that appear in the budget. To see all
expenses balanced against the budget, use --add-budget. You can even see only the un-
budgeted expenses using --unbudgeted:

$ ledger --unbudgeted --monthly register ^expenses

You can also use these flags with the balance command.

9.2 Forecasting

Sometimes it’s useful to know what your finances will look like in the future, such as
determining when an account will reach zero. Ledger makes this easy to do, using the
same periodic transactions as are used for budgeting. An example forecast report can be
generated with:

$ ledger --file drewr3.dat --forecast "T>{\$-500.00}" register ^assets ^liabilities

Chapter 9: Budgeting and Forecasting 98

This report continues outputting postings until the running total is greater than $-500.00.
A final posting is always shown, to inform you what the total afterwards would be.

Forecasting can also be used with the balance report, but by date only, and not against
the running total:

$ ledger --forecast "d<[2010]" bal ^assets ^liabilities

99

10 Time Keeping

Ledger directly supports “timelog” entries, which have this form:
i 2013/03/28 22:13:00 ACCOUNT[PAYEE]

o 2013/03/29 03:39:00

This records a check-in to the given ACCOUNT, and a check-out. You can be checked-in
to multiple accounts at a time, if you wish, and they can span multiple days (use --day-

break to break them up in the report). The number of seconds between check-in and
check-out is accumulated as time to that ACCOUNT. If the checkout uses a capital ‘O’, the
transaction is marked “cleared”. You can use an optional PAYEE for whatever meaning
you like.

Now, there are a few ways to generate this information. You can use the timeclock.el
package, which is part of Emacs. Or you can write a simple script in whichever language
you prefer to emit similar information. Or you can use Org mode’s time-clocking abilities
and the org2tc script developed by John Wiegley.

These timelog entries can appear in a separate file, or directly in your main ledger file.
The initial ‘i’ and ‘o’ characters count as Ledger “directives”, and are accepted anywhere
that ordinary transactions are valid.

100

11 Value Expressions

Ledger uses value expressions to make calculations for many different purposes:

1. The values displayed in reports.

2. For predicates (where truth is anything non-zero), to determine which postings are
calculated (option --limit EXPR (-l)) or displayed (option --display EXPR (-d)).

3. For sorting criteria, to yield the sort key.

4. In the matching criteria used by automated postings.

Value expressions support most simple math and logic operators, in addition to a set of
functions and variables.

Display predicates are also very handy with register reports, to constrain which trans-
actions are printed. For example, the following command shows only transactions from the
beginning of the current month, while still calculating the running balance based on all
transactions:

$ ledger -d "d>[this month]" register checking

The advantage of this command’s complexity is that it prints the running total in terms
of all transactions in the register. The following, simpler command is similar, but totals
only the displayed postings:

$ ledger -b "this month" register checking

11.1 Variables

Below are the one letter variables available in any value expression. For the register and
print commands, these variables relate to individual postings, and sometimes the account
affected by a posting. For the balance command, these variables relate to accounts, often
with a subtle difference in meaning. The use of each variable for both is specified.

t This maps to whatever the user specified with --amount EXPR (-t). In a
register report, --amount EXPR (-t) changes the value column; in a balance

report, it has no meaning by default. If --amount EXPR (-t) was not specified,
the current report style’s value expression is used.

T This maps to whatever the user specified with --total VEXPR (-T). In a regis-
ter report, --total VEXPR (-T) changes the totals column; in a balance report,
this is the value given for each account. If --total VEXPR (-T) was not speci-
fied, the current report style’s value expression is used.

m This is always the present moment/date.

11.1.1 Posting/account details

d

date A posting’s date, as the number of seconds past the epoch. This is always
“today” for an account.

aux_date A posting’s aux date

a

amount The posting’s amount; the balance of an account, without considering children.

Chapter 11: Value Expressions 101

b The cost of a posting; the cost of an account, without its children.

v The market value of a posting or an account, without its children.

g The net gain (market value minus cost basis), for a posting or an account,
without its children. It is the same as ‘v-b’.

depth The depth (“level”) of an account. If an account has one parent, its depth is
one.

n The index of a posting, or the count of postings affecting an account.

X

cleared ‘1’ if a posting’s transaction has been cleared, ‘0’ otherwise.

uncleared

‘1’ if a posting’s transaction state is uncleared, ‘0’ otherwise.

pending ‘1’ if a posting’s transaction state is pending, ‘0’ otherwise.

R ‘1’ if a posting is not virtual, ‘0’ otherwise.

Z ‘1’ if a posting is not automated, ‘0’ otherwise.

11.1.2 Calculated totals

O The total of all postings seen so far, or the total of an account and all its
children.

N The total count of postings affecting an account and all its children.

11.2 Functions

The available one letter functions are:

- Negates the argument.

U The absolute (unsigned) value of the argument.

S Strips the commodity from the argument.

P The present market value of the argument. The syntax ‘P(x,d)’ is supported,
which yields the market value at time ‘d’. If no date is given, then the current
moment is used.

11.3 Operators

The operators, in order of precedence, are:

1. * /

2. + -

3. ! < > =

4. & | ?:

11.3.1 Unary Operators

not (!) neg

Chapter 11: Value Expressions 102

11.3.2 Binary Operators

== < <= > >= and or + - * / QUERY COLON CONS SEQ DEFINE LOOKUP LAMBDA CALL MATCH

11.4 Complex expressions

More complicated expressions are possible using:

expr "amount == COMMODITY AMOUNT"

The amount can be any kind of amount supported by ledger, with or without
a commodity. Use this for decimal values.

/REGEX/

expr account =~ /REGEX/

A regular expression that matches against an account’s full name. If a posting,
this will match against the account affected by the posting.

@/REGEX/

expr payee =~ /REGEX/

A regular expression that matches against a transaction’s payee name.

%/REGEX/

expr has_tag(/REGEX/)

expr has_tag('TAG')

A regular expression (REGEX) or string (TAG) that checks for the tags of a
transaction.

expr has_meta(/REGEX/)

expr has_meta('TAG')

A regular expression (REGEX) or string (TAG) that checks for the metadata
key of a transaction.

expr tag(REGEX) =~ /REGEX/

A regular expression that matches a transaction’s tags against its values.

expr date =~ /REGEX/

Useful for specifying a date in plain terms. For example, you could say ‘expr
date =~ /2014/’.

expr comment =~ /REGEX/

A regular expression that matches against a posting’s comment field. This
searches only a posting’s field, not the transaction’s note or comment field. For
example, ledger reg "expr" "comment =~ /landline/" will match:

2014/1/29 Phone bill

Assets:Checking $50.00

Expenses:Phone $-50.00 ; landline bill

but will not match:

2014/1/29 Phone bill ; landline bill

; landline bill

Assets:Checking $50.00

Expenses:Phone $-50.00

To match the latter, use ‘ledger reg "expr" "note =~ /landline/"’ instead.

Chapter 11: Value Expressions 103

expr note =~ /REGEX/

A regular expression that matches against a transaction’s note field. This
searches all comments in the transaction, including comments on individual
postings. Thus, ‘ledger reg "expr" "note =~ /landline/"’ will match all the
three examples below:

2014/1/29 Phone bill

Assets:Checking $50.00

Expenses:Phone $-50.00 ; landline bill

2014/1/29 Phone bill ; landline bill

Assets:Checking $50.00

Expenses:Phone $-50.00

2014/1/29 Phone bill

; landline bill

Assets:Checking $50.00

Expenses:Phone $-50.00

(EXPR) A sub-expression is nested in parenthesis. This can be useful passing more
complicated arguments to functions, or for overriding the natural precedence
order of operators.

expr base =~ /REGEX/

A regular expression that matches against an account’s base name. If a posting,
this will match against the account affected by the posting.

expr code =~ /REGEX/

A regular expression that matches against the transaction code (the text that
occurs between parentheses before the payee).

expr any(KEYWORD =~ /REGEX/)

The any keyword is used to specify that at least one posting of the transaction
must match the expression in brackets. For example, ‘ledger -f d reg expr

"any(account =~ /Assets:/)"’ can be used to display all transactions which
involve at least one ‘Assets:’ account.

expr all(KEYWORD =~ /REGEX/)

The all keyword is used to specify that all postings of a transactions must
match the expression in brackets. For example, ‘ledger -f d reg expr

"all(account =~ /Assets:/)"’ can be used to display all transactions where
all accounts are ‘Assets:’.

The query command can be used to see how Ledger interprets your query. This can
be useful if you are not getting the results you expect (see Section 14.3.5 [Pre-Commands],
page 125).

11.4.1 Miscellaneous

The following Ledger journal data (saved as expr.dat) is used to explain the behaviour of
the functions and variables below:

2015/01/16 * (C0D3) Payee

Assets:Cash ¤ -123,45

; Payee: PiggyBank

Expenses:Office Supplies

Chapter 11: Value Expressions 104

[Function]abs value
[Function]U value

Return the absolute value of the given value, e.g. amount.

$ ledger -f expr.dat --format "%(account) %(abs(amount))\n" reg assets

Assets:Cash ¤ 123,45

[Variable]account
[Variable]a
[Variable]A

Return the concerned account.

It may be appended with .note or .depth to get either the note or the depth of the
account

[Variable]account_base
Return the last part of the account hierarchy.

[Function]amount_expr
Return the calculated amount of the posting according to the --amount option.

[Function]ansify_if value color bool
Render the given expression as a string, applying the proper ANSI escape codes to
display it in the given color if bool is true. It typically checks the value of the
option --color. Since ANSI escape codes include non-printable character sequences,
such as escape ^[the following example may not appear as the final result on the
command-line.

$ ledger -f expr.dat --format "%(ansify_if(account, blue, options.color))\n" reg

œ[34mAssets:Cashœ[0m

œ[34mExpenses:Office Suppliesœ[0m

[Function]ceiling value
Return the next integer of value toward +infinity.

$ ledger -f expr.dat --format "%(account) %(ceiling(amount))\n" reg

Assets:Cash ¤ -123,00

Expenses:Office Supplies ¤ 124,00

[Variable]code
Return the transaction code, the string between the parenthesis after the date.

$ ledger -f expr.dat --format "%(account) %(code)\n" reg assets

Assets:Cash C0D3

[Variable]commodity
Return the commodity of the posting amount.

$ ledger -f expr.dat --format "%(account) %(commodity)\n" reg

Assets:Cash ¤
Expenses:Office Supplies ¤

[Variable]date
[Variable]d

Return the date of the posting.

Chapter 11: Value Expressions 105

$ ledger -f expr.dat --format "%(date) %(account)\n" reg assets

2015/01/16 Assets:Cash

[Variable]display_account
Return the concerned account, surrounded with [] or () for virtual postings.

It may be appended with .note or .depth to get either the note or the depth of the
account

[Variable]display_amount
[Variable]t

undocumented! Please help by contributing documentation for this feature.

[Variable]display_total
[Variable]T

undocumented! Please help by contributing documentation for this feature.

[Function]floor value
Return the next integer of value toward −infinity.

$ ledger -f expr.dat --format "%(account) %(floor(amount))\n" reg

Assets:Cash ¤ -124,00

Expenses:Office Supplies ¤ 123,00

[Function]format string
Evaluate string as format just like the --format option.

[Function]format_date date format
Return the date as a string using format. See strftime (3) for format string details.

$ ledger -f expr.dat --format "%(format_date(date, '%A, %B %d. %Y'))\n" reg assets

Friday, January 16. 2015

[Function]format_datetime datetime format
Return the datetime as a string using format. Refer to strftime (3) for format
string details.

[Function]get_at sequence index
Return the value in sequence at index. The first element is index 0. For internal use
only.

[Function]is_seq value
Return true if value is a sequence. For internal use only.

[Function]join value
Replace all newlines in value with \n.

[Function]justify value first width latter width right justify colorize
Right or left justify the string representing value. The width of the field in the first
line is given by first width. For subsequent lines the width is given by latter width.
If latter width=-1, then first width is used for all lines. If right justify=true then
the field is right justified within the width of the field. If it is false, then the field is

Chapter 11: Value Expressions 106

left justified and padded to the full width of the field. If colorize is true, then ledger
will honor color settings.

$ ledger -f expr.dat --format "»%(justify(account, 30, 30, true))«\n" reg

» Assets:Cash«
» Expenses:Office Supplies«

[Function]market value datetime
[Function]P

Return the price of value at datetime. Note that datetime must be surrounded by
brackets in order to be parsed correctly, e.g. [2012/03/23].

[Function]nail_down
undocumented! Please help by contributing documentation for this feature.

[Variable]now
[Variable]m

Return the current datetime.

[Variable]options
A variable that allows access to the values of the given command-line options using the
long option names, e.g. to see whether --daily or -D was given use option.daily.

$ ledger -f expr.dat -X $ -D --format "%(options.daily) %(options.exchange)\n" reg assets

true $

[Function]percent value a value b
Return the percentage of value a in relation to value b (used as 100%)

$ ledger -f expr.dat --format "%(percent(amount, 200))\n" reg

-61.73%

61.73%

[Function]print value
Print value to stdout. For internal use only.

[Function]quantity value
Return the quantity of value for values that have a per-unit cost.

[Function]quoted expression
Surround expression with double quotes. If expression contains a double quote, it will
be escaped with a backslash.

$ ledger -f expr.dat --format "%(quoted(account)) %(quoted(amount))\n" reg

"Assets:Cash" "¤ -123,45"

"Expenses:Office Supplies" "¤ 123,45"

[Function]quoted_rfc expression
Similar, except an embedded double quote would be escaped by preceding it with
another double quote, as prescribed by RFC 4180.

[Function]round
undocumented! Please help by contributing documentation for this feature.

[Function]rounded
undocumented! Please help by contributing documentation for this feature.

Chapter 11: Value Expressions 107

[Function]roundto value n
Return value rounded to n digits. Does not affect formatting.

$ ledger -f expr.dat --format "%(account) %(roundto(amount, 1))\n" reg

Assets:Cash ¤ -123,40

Expenses:Office Supplies ¤ 123,40

[Function]scrub value
Clean value using various transformations such as round, stripping value annotations,
and more.

[Function]should_bold
Return true if expression given to --bold-if evaluates to true. For internal use only.

[Function]strip value
[Function]S

Strip value annotation from value.

[Function]to_amount value
Convert value to an amount. For internal use only.

[Function]to_balance value
Convert value to a balance. For internal use only.

[Function]to_boolean value
Convert value to a boolean. For internal use only.

[Function]to_date value
Convert value to a date. For internal use only.

[Function]to_datetime value
Convert value to a datetime. For internal use only.

[Function]to_int value
[Function]int value

Return the integer value for value.

$ ledger -f expr.dat --format "%(1 + to_int('1'))\n%(2,5 + int(2,5))\n" reg assets

2

4.5

[Function]to_mask value
Convert value to a mask. For internal use only.

[Function]to_sequence value
Convert value to a sequence. For internal use only.

[Function]to_string value
[Function]str value

Convert value to a character string.

[Variable]today
Return today’s date.

Chapter 11: Value Expressions 108

$ ledger -f expr.dat --now 2015/01/01 --format "%(today)\n" reg assets

2015/01/01

[Function]top_amount
undocumented! Please help by contributing documentation for this feature.

[Function]total_expr
Return the calculated total of the posting according to the --total option.

[Function]trim value
Trim leading and trailing whitespace from value.

$ ledger -f expr.dat --format "»%(trim(' Trimmed '))«\n" reg assets

»Trimmed«

[Function]truncated string total len account len
Truncate string to total len ensuring that each account is at least account len long.

[Function]unround
undocumented! Please help by contributing documentation for this feature.

[Function]unrounded
undocumented! Please help by contributing documentation for this feature.

[Function]value_date
undocumented! Please help by contributing documentation for this feature.

109

12 Format Strings

12.1 Format String Basics

Format strings may be used to change the output format of reports. They are specified
by passing a formatting string to the --format FORMAT_STRING (-F) option. Within that
string, constructs are allowed which make it possible to display the various parts of an
account or posting in custom ways.

There are several additional flags that allow you to define formats for specific reports.
These are useful to define in your configuration file and will allow you to run ledger reports
from the command-line without having to enter a new format for each command.

• --balance-format FORMAT_STRING

• --budget-format FORMAT_STRING

• --cleared-format FORMAT_STRING

• --csv-format FORMAT_STRING

• --plot-amount-format FORMAT_STRING

• --plot-total-format FORMAT_STRING

• --pricedb-format FORMAT_STRING

• --prices-format FORMAT_STRING

• --register-format FORMAT_STRING

12.2 Format String Structure

Within a format string, a substitution is specified using a percent ‘%’ character. The basic
format of all substitutions is:

%[-][MIN WIDTH][.MAX WIDTH](VALEXPR)

If the optional minus sign ‘-’ follows the percent character ‘%’, whatever is substituted
will be left justified. The default is right justified. If a minimum width is given next, the
substituted text will be at least that wide, perhaps wider. If a period and a maximum
width is given, the substituted text will never be wider than this, and will be truncated to
fit. Here are some examples:

%-20P A transaction’s payee, left justified and padded to 20 characters wide.

%20P The same, right justified, at least 20 chars wide.

%.20P The same, no more than 20 chars wide.

The expression following the format constraints can be a single letter, or an expression
enclosed in parentheses or brackets.

12.3 Format Expressions

For demonstration purposes the journal data from [expr.dat], page 103, is used. The allow-
able expressions are:

% Inserts a percent sign.
$ ledger -f expr.dat --format "%%\n" reg assets

%

Chapter 12: Format Strings 110

t Inserts the results of the value expression specified by --amount EXPR (-t). If
--amount EXPR (-t) was not specified, the current report style’s value expres-
sion is used.

T Inserts the results of the value expression specified by --total VEXPR (-T). If
--total VEXPR (-T) was not specified, the current report style’s value expres-
sion is used.

(EXPR) Inserts the amount resulting from the value expression given in parentheses.
To insert five times the total value of an account, for example, one could say
‘%12(5*O)’. Note: It’s important to put the five first in that expression, so that
the commodity doesn’t get stripped from the total.

$ ledger -f expr.dat --format "%12(5*O)\n" reg assets

¤ -617,25

[DATEFMT]

Inserts the result of formatting a posting’s date with a date format string,
exactly like those supported by strftime (3). For example: ‘%[%Y/%m/%d
%H:%M:%S]’.

S Insert the path name of the file from which the transaction’s data was read.
Only sensible in a register report.

$ ledger -f ~/journal.dat --format "%S\n" reg assets

/home/jwiegley/journal.dat

B Inserts the beginning character position of that transaction within the file.
$ ledger -f expr.dat --format "%B\n" reg assets

26

b Inserts the beginning line of that transaction within the file.
$ ledger -f expr.dat --format "%b\n" reg assets

2

E Inserts the ending character position of that transaction within the file.
$ ledger -f expr.dat --format "%E\n" reg assets

90

e Inserts the ending line of that transaction within the file.
$ ledger -f expr.dat --format "%e\n" reg assets

3

D Returns the date according to the default format.

d Returns the date according to the default format. If the transaction has an
effective date, it prints ACTUAL_DATE=EFFECTIVE_DATE.

X If a posting has been cleared, this returns a 1, otherwise returns 0.

Y This is the same as ‘%X’, except that it only displays a state character if all of
the member postings have the same state.

C Inserts the transaction code. This is the value specified between parentheses
on the first line of the transaction.

$ ledger -f expr.dat --format "%C\n" reg assets

(C0D3)

Chapter 12: Format Strings 111

P Inserts the payee related to a posting.
$ ledger -f expr.dat --format "%P\n" reg assets

PiggyBank

A Inserts the full name of an account.
$ ledger -f expr.dat --format "%A\n" reg

Assets:Cash

Expenses:Office Supplies

N Inserts the note associated with a posting, if one exists.
$ ledger -f expr.dat --format "%N\n" reg assets

Payee: PiggyBank

/ The ‘%/’ construct is special. It separates a format string between what is
printed for the first posting of a transaction, and what is printed for all subse-
quent postings. If not used, the same format string is used for all postings.

$ ledger -f expr.dat --format "%P\n%/%A\n" reg

PiggyBank

Expenses:Office Supplies

12.4 Balance format

As an example of how flexible the --format FORMAT_STRING strings can be, the default
balance format looks like this (the various functions are described later):

"%(justify(scrub(display_total), 20, -1, true, color))"

" %(!options.flat ? depth_spacer : \"\")"

"%-(ansify_if(partial_account(options.flat), blue if color))\n%/"

"%$1\n%/"

"--------------------\n"

12.5 Formatting Functions and Codes

12.5.1 Field Widths

The following codes return the width allocated for the specific fields. The defaults can be
changed using the corresponding command-line options:

• date_width

• payee_width

• account_width

• amount_width

• total_width

12.5.2 Colors

The character-based formatting ledger can do is limited to the ANSI terminal character
colors and font highlights in a normal TTY session.

red magenta bold

green cyan underline

yellow white blink

blue black

Chapter 12: Format Strings 112

12.5.3 Quantities and Calculations

amount_expr

abs

commodity

display_amount

display_total

floor

get_at

is_seq

market

percent

price

quantity

rounded

truncated

total_expr

top_amount

to_boolean

to_int

to_amount

to_balance

unrounded

12.5.4 Date Functions

The following functions allow you to manipulate and format dates.

date Return the date of the current transaction.

format_date(date, "FORMAT_STRING")

Format the date using the given format string.

now Return the current date and time. If the --now DATE option is defined it will
return that value.

today Return the current date. If the --now DATE option is defined it will return that
value.

to_datetime

Convert a string to a date-time value.

to_date Convert a string to date value.

value_date

12.5.5 Date and Time Format Codes

Date and time format are specified as strings of single letter codes preceded by percent
signs. Any separator, or no separator can be specified.

Chapter 12: Format Strings 113

12.5.5.1 Days

Dates are formed from a combination of day, month and year codes, in whatever order you
prefer:

%Y Four digit year.

%y Two digit year.

%m Two digit month.

%d Two digit date.

So "%Y%m%d" yields ‘20111214’ which provides a date that is simple to sort on.

12.5.5.2 Weekdays

You can have additional weekday information in your date with ‘%A’ as

%m-%d-%Y %A

yields ‘02-10-2010 Wednesday’.

%A %m-%d-%Y

yields ‘Wednesday 02-10-2010’.

These are options you can select for weekday

%a weekday, abbreviated Wed.

%A weekday, full Wednesday.

%d day of the month (dd), zero padded up to 10.

%e day of the month (dd), no leading zero up to 10.

%j day of year, zero padded 000–366.

%u day of week starting with Monday (1), i.e. mtwtfss 3.

%w day of week starting with Sunday (0), i.e. smtwtfs 3.

12.5.5.3 Month

You can have additional month information in your date with ‘%B’ as

%m-%d-%Y %B

yields ‘02-10-2010 February’.

%B %m-%d-%Y

yields ‘February 02-10-2010’.

These are options you can select for month

%m ‘mm’ month as two digits.

%b Locale’s abbreviated month, for example ‘02’ might be abbreviated as ‘Feb’.

%B Locale’s full month, variable length, e.g. February.

Chapter 12: Format Strings 114

12.5.5.4 Miscellaneous Date Codes

Additional date format parameters which can be used:

%U week number Sunday as first day of week, ranging 01–53.

%W week number Monday as first day of week, ranging 01–53.

%V week of the year, ranging 01–53.

%C century, ranging 00–99.

%D yields %m/%d/%y as in ‘02/10/10’.

%x locale’s date representation, as ‘02/10/2010’ for the U.S.

%F yields %Y-%m-%d as in ‘2010-02-10’.

12.5.6 Text Formatting

The following format functions allow you limited formatting of text:

ansify_if(value, color)

Surrounds the string representing value with ANSI codes to give it color on a
TTY display. Has no effect if directed to a file.

justify(value, first_width, latter_width, right_justify, colorize)

Right or left justify the string representing value. The width of the field in
the first line is given by first_width. For subsequent lines the width is given
by latter_width. If latter_width=-1, then first_width is use for all lines.
If right_justify=true then the field is right justify within the width of the
field. If it is false, then the field is left justified and padded to the full width
of the field. If colorize is true, then ledger will honor color settings.

join(STR)

Replaces line feeds in STR with ‘\n’.

quoted(STR)

Return STR surrounded by double quotes, ‘"STR"’.

strip(value)

Values can have numerous annotations, such as effective dates and lot prices.
strip removes these annotations.

12.5.7 Data File Parsing Information

The following format strings provide locational metadata regarding the coordinates of en-
tries in the source data file(s) that generated the posting.

filename the name of the ledger data file from whence the posting came, abbreviated ‘S’.

beg_pos character position in filename where entry for posting begins, abbreviated ‘B’.

end_pos character position in filename where entry for posting ends, abbreviated ‘E’.

beg_line line number in filename where entry for posting begins, abbreviated ‘b’.

end_line line number in filename where entry for posting ends, abbreviated ‘e’.

115

13 Extending with Python

Python can be used to extend your Ledger experience. But first, a word must be said about
Ledger’s data model, so that other things make sense later.

13.1 Basic data traversal

Every interaction with Ledger happens in the context of a Session. Even if you don’t create
a session manually, one is created for you by the top-level interface functions. The Session
is where objects live like the Commodities that Amounts refer to.

To make a Session useful, you must read a Journal into it, using the function ‘read_
journal‘. This reads Ledger data from the given file, populates a Journal object within
the current Session, and returns a reference to that Journal object.

Within the Journal live all the Transactions, Postings, and other objects related to your
data. There are also AutomatedTransactions and PeriodicTransactions, etc.

Here is how you would traverse all the postings in your data file:
import ledger

for xact in ledger.read_journal("sample.dat").xacts():

for post in xact.posts():

print "Transferring %s to/from %s" % (post.amount, post.account)

13.2 Raw versus Cooked

Ledger data exists in one of two forms: raw and cooked. Raw objects are what you get from
a traversal like the above, and represent exactly what was seen in the data file. Consider
this journal:

= true

(Assets:Cash) $100

2012-03-01 KFC

Expenses:Food $100

Assets:Credit

In this case, the raw regular transaction in this file is:
2012-03-01 KFC

Expenses:Food $100

Assets:Credit

While the cooked form is:
2012-03-01 KFC

Expenses:Food $100

Assets:Credit $-100

(Assets:Cash) $100

So the easy way to think about raw vs. cooked is that raw is the unprocessed data, and
cooked has had all considerations applied.

When you traverse a Journal by iterating over its transactions, you are generally looking
at raw data. In order to look at cooked data, you must generate a report of some kind by
querying the journal:

for post in ledger.read_journal("sample.dat").query("food"):

print "Transferring %s to/from %s" % (post.amount, post.account)

Chapter 13: Extending with Python 116

The reason why queries iterate over postings instead of transactions is that queries often
return only a “slice” of the transactions they apply to. You can always get at a matching
posting’s transaction by looking at its xact member:

last_xact = None

for post in ledger.read_journal("sample.dat").query(""):

if post.xact != last_xact:

for post in post.xact.posts():

print "Transferring %s to/from %s" % (post.amount,

post.account)

last_xact = post.xact

This query ends up reporting every cooked posting in the Journal, but does it transaction-
wise. It relies on the fact that an unsorted report returns postings in the exact order they
were parsed from the journal file.

13.3 Queries

The Journal.query() method accepts every argument you can specify on the command-line,
including --options.

Since a query “cooks” the journal it applies to, only one query may be active for that
journal at a given time. Once the query object is gone (after the for loop), then the data
reverts back to its raw state.

13.4 Embedded Python

You can embed Python into your data files using the ’python’ directive:
python

import os

def check_path(path_value):

print "%s => %s" % (str(path_value), os.path.isfile(str(path_value)))

return os.path.isfile(str(path_value))

tag PATH

assert check_path(value)

2012-02-29 KFC

; PATH: somebogusfile.dat

Expenses:Food $20

Assets:Cash

Any Python functions you define this way become immediately available as valexpr
functions.

13.5 Amounts

When numbers come from Ledger, like post.amount, the type of the value is Amount. It can
be used just like an ordinary number, except that addition and subtraction are restricted
to amounts with the same commodity. If you need to create sums of multiple commodities,
use a Balance. For example:

total = Balance()

for post in ledger.read_journal("sample.dat").query(""):

total += post.amount

print total

117

14 Ledger for Developers

14.1 Internal Design

Ledger is developed as a tiered set of functionality, where lower tiers know nothing about
the higher tiers. In fact, multiple libraries are built during the development the process,
and link unit tests to these libraries, so that it is a link error for a lower tier to violate this
modularity.

Those tiers are:

• Utility code

There’s lots of general utility in Ledger for doing time parsing, using Boost.Regex, error
handling, etc. It’s all done in a way that can be reused in other projects as needed.

• Commoditized Amounts (amount t, commodity t and friends)

A numerical abstraction combining multi-precision rational numbers (via GMP) with
commodities. These structures can be manipulated like regular numbers in either C++
or Python (as Amount objects).

• Commodity Pool

Commodities are all owned by a commodity pool, so that future parsing of amounts
can link to the same commodity and established a consistent price history and record
of formatting details.

• Balances

Adds the concept of multiple amounts with varying commodities. Supports simple
arithmetic, and multiplication and division with non-commoditized values.

• Price history

Amounts have prices, and these are kept in a data graph which the amount code itself is
only dimly aware of (there’s three points of access so an amount can query its revalued
price on a given date).

• Values

Often the higher layers in Ledger don’t care if something is an amount or a balance,
they just want to add stuff to it or print it. For this, I created a type-erasure class,
value t/Value, into which many things can be stuffed and then operated on. They
can contain amounts, balances, dates, strings, etc. If you try to apply an operation
between two values that makes no sense (like dividing an amount by a balance), an
error occurs at runtime, rather than at compile-time (as would happen if you actually
tried to divide an amount_t by a balance_t).

This is the core data type for the value expression language.

• Value expressions

The next layer up adds functions and operators around the Value concept. This lets
you apply transformations and tests to Values at runtime without having to bake it
into C++. The set of functions available is defined by each object type in Ledger (posts,
accounts, transactions, etc.), though the core engine knows nothing about these. At
its base, it only knows how to apply operators to values, and how to pass them to and
receive them from functions.

Chapter 14: Ledger for Developers 118

• Query expressions

Expressions can be onerous to type at the command-line, so there’s a shorthand for
reporting called “query expressions”. These add no functionality of their own, but are
purely translated from the input string down to the corresponding value expression,
for example the input string ‘cash’ is translated to ‘(account =~ /cash/)’. This is a
convenience layer.

• Format strings

Format strings let you interpolate value expressions into strings, with the requirement
that any interpolated value have a string representation. Really all this does is cal-
culate the value expression in the current report context, call the resulting value’s
to_string() method, and stuffs the result into the output string. It also provides
printf-like behavior, such as min/max width, right/left justification, etc.

• Journal items

Next is a base type shared by anything that can appear in a journal: an item t. It
contains details common to all such parsed entities, like what file and line it was found
on, etc.

• Journal posts

The most numerous object found in a Journal, postings are a type of item that contain
an account, an amount, a cost, and metadata. There are some other complications,
like the account can be marked virtual, the amount could be an expression, etc.

• Journal transactions

Postings are owned by transactions, always. This subclass of item_t knows about the
date, the payee, etc. If a date or metadata tag is requested from a posting and it
doesn’t have that information, the transaction is queried to see if it can provide it.

• Journal accounts

Postings are also shared by accounts, though the actual memory is managed by the
transaction. Each account knows all the postings within it, but contains relatively little
information of its own.

• The Journal object

Finally, all transactions with their postings, and all accounts, are owned by a journal_t
object. This is the go-to object for querying and reporting on your data.

• Textual journal parser

There is a textual parser, wholly contained in textual.cc, which knows how to parse
text into journal objects, which then get “finalized” and added to the journal. Final-
ization is the step that enforces the double-entry guarantee.

• Iterators

Every journal object is “iterable”, and these iterators are defined in iterators.h and
iterators.cc. This iteration logic is kept out of the basic journal objects themselves
for the sake of modularity.

• Comparators

Another abstraction isolated to its own layer, this class encapsulating the comparison of
journal objects, based on whatever value expression the user passed to --sort VEXPR.

Chapter 14: Ledger for Developers 119

• Temporaries

Many reports bring pseudo-journal objects into existence, like postings which report
totals in a ‘Total’ account. These objects are created and managed by a temporaries_
t object, which gets used in many places by the reporting filters.

• Option handling

There is an option handling subsystem used by many of the layers further down. It
makes it relatively easy for me to add new options, and to have those option settings
immediately accessible to value expressions.

• Session objects

Every journal object is owned by a session, with the session providing support for that
object. In GUI terms, this is the Controller object for the journal Data object, where
every document window would be a separate session. They are all owned by the global
scope.

• Report objects

Every time you create any report output, a report object is created to determine what
you want to see. In the Ledger REPL, a new report object is created every time a
command is executed. In CLI mode, only one report object ever comes into being, as
Ledger immediately exits after displaying the results.

• Reporting filters

The way Ledger generates data is this: it asks the session for the current journal, and
then creates an iterator applied to that journal. The kind of iterator depends on the
type of report.

This iterator is then walked, and every object yielded from the iterator is passed to an
“item handler”, whose type is directly related to the type of the iterator.

There are many, many item handlers, which can be chained together. Each one receives
an item (post, account, xact, etc.), performs some action on it, and then passes it down
to the next handler in the chain. There are filters which compute the running totals;
that queue and sort all the input items before playing them back out in a new order;
that filter out items which fail to match a predicate, etc. Almost every reporting feature
in Ledger is related to one or more filters. Looking at filters.h, there are over 25 of
them defined currently.

• The filter chain

How filters get wired up, and in what order, is a complex process based on all the
various options specified by the user. This is the job of the chain logic, found entirely
in chain.cc. It took a really long time to get this logic exactly right, which is why I
haven’t exposed this layer to the Python bridge yet.

• Output modules

Although filters are great and all, in the end you want to see stuff. This is the job of
special “leaf” filters called output modules. They are implemented just like a regular
filter, but they don’t have a “next” filter to pass the data on down to. Instead, they
are the end of the line and must do something with the item that results in the user
seeing something on their screen or in a file.

Chapter 14: Ledger for Developers 120

• Select queries

Select queries know a lot about everything, even though they implement their logic by
implementing the user’s query in terms of all the other features thus presented. Select
queries have no functionality of their own, they are simple a shorthand to provide access
to much of Ledger’s functionality via a cleaner, more consistent syntax.

• The Global Scope

There is a master object which owns every other objects, and this is Ledger’s global
scope. It creates the other objects, provides REPL behavior for the command-line
utility, etc. In GUI terms, this is the Application object.

• The Main Driver

This creates the global scope object, performs error reporting, and handles command-
line options which must precede even the creation of the global scope, such as --debug
CODE.

And that’s Ledger in a nutshell. All the rest are details, such as which value expressions
each journal item exposes, how many filters currently exist, which options the report and
session scopes define, etc.

14.2 Journal File Format for Developers

This chapter offers a complete description of the journal data format, suitable for imple-
menters in other languages to follow. For users, the chapter on keeping a journal is less
extensive, but more typical of common usage (see Chapter 4 [Keeping a Journal], page 17).

Data is collected in the form of transactions which occur in one or more journal files.
Each transaction, in turn, is made up of one or more postings, which describe how amounts
flow from one account to another. Here is an example of the simplest of journal files:

2010/05/31 Just an example

Expenses:Some:Account $100.00

Income:Another:Account

In this example, there is a transaction date, a payee, or description of the transaction,
and two postings. The postings show movement of one hundred dollars from an account
within the Income hierarchy, to the specified expense account. The name and meaning of
these accounts is arbitrary, with no preferences implied, although you will find it useful to
follow standard accounting practices (see Chapter 3 [Principles of Accounting with Ledger],
page 7).

Since an amount is missing from the second posting, it is assumed to be the inverse of
the first. This guarantees the cardinal rule of double-entry accounting: the sum of every
transaction must balance to zero, or it is in error. Whenever Ledger encounters a null
posting in a transaction, it uses it to balance the remainder.

It is also typical, though not enforced, to think of the first posting as the destination,
and the final as the source. Thus, the amount of the first posting is typically positive.
Consider:

2010/05/31 An income transaction

Assets:Checking $1,000.00

Income:Salary

2010/05/31 An expense transaction

Chapter 14: Ledger for Developers 121

Expenses:Dining $100.00

Assets:Checking

14.2.1 Comments and meta-data

Comments are generally started using a ‘;’. However, in order to increase compatibility
with other text manipulation programs and methods three additional comment characters
are valid if used at the beginning of a line: ‘#’, ‘|’, and ‘*’.

14.2.2 Specifying Amounts

The heart of a journal is the amounts it records, and this fact is reflected in the diversity
of amount expressions allowed. All of them are covered here, though it must be said that
sometimes, there are multiple ways to achieve a desired result.

Note: It is important to note that there must be at least two spaces between the end of
the account and the beginning of the amount (including a commodity designator).

14.2.2.1 Integer Amounts

In the simplest form, bare decimal numbers are accepted:

2010/05/31 An income transaction

Assets:Checking 1000.00

Income:Salary

Such amounts may only use an optional period for a decimal point. These are referred
to as integer amounts or uncommoditized amounts. In most ways they are similar to
commoditized amounts, but for one significant difference: They always display in reports
with full precision. More on this in a moment. For now, a word must be said about how
Ledger stores numbers.

Every number parsed by Ledger is stored internally as an infinite-precision rational value.
Floating-point math is never used, as it cannot be trusted to maintain precision of values.
So, in the case of ‘1000.00’ above, the internal value is ‘100000/100’.

While rational numbers are great at not losing precision, the question arises: How should
they be displayed? A number like ‘100000/100’ is no problem, since it represents a clean
decimal fraction. But what about when the number ‘1/1’ is divided by three? How should
one print ‘1/3’, an infinitely repeating decimal?

Ledger gets around this problem by rendering rationals into decimal at the last possible
moment, and only for display. As such, some rounding must, at times, occur. If this
rounding would affect the calculation of a running total, special accommodation postings
are generated to make you aware it has happened. In practice, it happens rarely, but even
then it does not reflect adjustment of the internal amount, only the displayed amount.

What has still not been answered is how Ledger rounds values. Should ‘1/3’ be printed
as ‘0.33’ or ‘0.33333’? For commoditized amounts, the number of decimal places is decided
by observing how each commodity is used; but in the case of integer amounts, an arbitrary
factor must be chosen. Initially, this factor is six. Thus, ‘1/3’ is printed back as ‘0.333333’.
Further, this rounding factor becomes associated with each particular value, and is carried
through mathematical operations. For example, if that particular number were multiplied
by itself, the decimal precision of the result would be twelve. Addition and subtraction do
not affect precision.

Chapter 14: Ledger for Developers 122

Since each integer amount retains its own display precision, this is called full precision,
as opposed to commoditized amounts, which always look to their commodity to know what
precision they should round to, and so use commodity precision.

14.2.2.2 Commoditized Amounts

A commoditized amount is an integer amount which has an associated commodity. This
commodity can appear before or after the amount, and may or may not be separated from
it by a space. Most characters are allowed in a commodity name, except for the following:

• Any kind of white-space

• Numerical digits

• Punctuation: .,;:?!

• Mathematical and logical operators: -+*/^&|=

• Bracketing characters: <>[](){}
• The at symbol: @

And yet, any of these may appear in a commodity name if it is surrounded by double
quotes, for example:

100 "EUN+133"

If a quoted commodity is found, it is displayed in quotes as well, to avoid any confusion
as to which part is the amount, and which part is the commodity.

Another feature of commoditized amounts is that they are reported back in the same
form as parsed. If you specify dollar amounts using ‘$100’, they will print the same;
likewise with ‘100 $’ or ‘$100.000’. You may even use decimal commas, such as ‘$100,00’,
or thousand-marks, as in ‘$10,000.00’.

These display characteristics become associated with the commodity, with the result
being that all amounts of the same commodity are reported consistently. Where this is
most noticeable is the display precision, which is determined by the most precise value seen
for a given commodity—in most cases.

Ledger makes a distinction between observed amounts and unobserved amounts. An
observed amount is critiqued by Ledger to determine how amounts using that commodity
should be displayed; unobserved amounts are significant in their value only—no matter
how they are specified, it does not change how other amounts in that commodity will be
displayed.

An example of this is found in cost expressions, covered next.

14.2.3 Posting costs

You have seen how to specify either a commoditized or an integer amount for a posting.
But what if the amount you paid for something was in one commodity, and the amount
received was another? There are two main ways to express this:

2010/05/31 Farmer's Market

Assets:My Larder 100 apples

Assets:Checking -$20.00

In this example, you have paid twenty dollars for one hundred apples. The cost to you is
twenty cents per apple, and Ledger calculates this implied cost for you. You can also make
the cost explicit using a cost amount:

2010/05/31 Farmer's Market

Chapter 14: Ledger for Developers 123

Assets:My Larder 100 apples @ $0.200000

Assets:Checking

Here the per-unit cost is given explicitly in the form of a cost amount; and since cost
amounts are unobserved, the use of six decimal places has no effect on how dollar amounts
are displayed in the final report. You can also specify the total cost:

2010/05/31 Farmer's Market

Assets:My Larder 100 apples @@ $20

Assets:Checking

These three forms have identical meaning. In most cases the first is preferred, but the
second two are necessary when more than two postings are involved:

2010/05/31 Farmer's Market

Assets:My Larder 100 apples @ $0.200000

Assets:My Larder 100 pineapples @ $0.33

Assets:My Larder 100 "crab apples" @ $0.04

Assets:Checking

Here the implied cost is ‘$57.00’, which is entered into the null posting automatically
so that the transaction balances.

14.2.4 Primary commodities

In every transaction involving more than one commodity, there is always one which is the
primary commodity. This commodity should be thought of as the exchange commodity, or
the commodity used to buy and sell units of the other commodity. In the fruit examples
above, dollars are the primary commodity. This is decided by Ledger based on the placement
of the commodity in the transaction:

2010/05/31 Sample Transaction

Expenses 100 secondary

Assets -50 primary

2010/05/31 Sample Transaction

Expenses 100 secondary @ 0.5 primary

Assets

2010/05/31 Sample Transaction

Expenses 100 secondary @@ 50 primary

Assets

The only case where knowledge of primary versus secondary comes into play is in re-
ports that use the --market (-V) or --basis (-B) options. With these, only primary
commodities are shown.

If a transaction uses only one commodity, this commodity is also considered a primary.
In fact, when Ledger goes about ensuring that all transactions balance to zero, it only ever
asks this of primary commodities.

14.3 Developer Commands

14.3.1 echo

This command simply echoes its argument back to the output.

Chapter 14: Ledger for Developers 124

14.3.2 reload

Forces ledger to reload any journal files. This function exists to support external programs
controlling a running ledger process and does nothing for a command-line user.

14.3.3 source

The source command takes a journal file as an argument and parses it checking for errors;
no other reports are generated, and no other arguments are necessary. Ledger will return
success if no errors are found.

14.3.4 Debug Options

These options are primarily for Ledger developers, but may be of some use to a user trying
something new.

--args-only

Ignore init files and environment variables for the ledger run.

--debug CODE

If Ledger has been built with debug options this will provide extra data during
the run. Listed below are the available CODES to debug. You can provide
multiple using a regex expression like "(account.display|expr.calc)".

account.display draft.xact option.names

account.sorted expr.calc org.next_amount

amount.commodities expr.compile org.next_total

amount.convert expr.merged.compile parser.error

amount.is_zero filters.changed_value pool.commodities

amount.parse filters.changed_

value.rounding

post.assign

amount.price filters.collapse python.init

amount.refs filters.forecast python.interp

amount.roundto filters.interval query.mask

amount.truncate filters.revalued report.predicate

amount.unround format.abbrev scope.search

annotate.less format.expr scope.symbols

archive.journal generate.post select.parse

auto.columns generate.post.string textual.include

budget.generate history.find textual.parse

commodity.annotated.striphistory.map timelog

commodity.annotations item.meta times.epoch

commodity.compare ledger.read times.interval

commodity.download ledger.validate times.parse

commodity.exchange lookup value.sort

commodity.price.find lookup.account value.storage.refcount

commodity.prices.add mask.match xact.extend

commodity.prices.find memory.debug xact.extend.cleared

csv.mappings op.memory xact.extend.fail

csv.parse option.args xact.finalize

Chapter 14: Ledger for Developers 125

--trace INT

Enable tracing. The INT specifies the level of trace desired:

LOG_OFF 0
LOG_CRIT 1
LOG_FATAL 2
LOG_ASSERT 3
LOG_ERROR 4
LOG_VERIFY 5
LOG_WARN 6
LOG_INFO 7
LOG_EXCEPT 8
LOG_DEBUG 9
LOG_TRACE 10
LOG_ALL 11

--verbose

-v Print detailed information on the execution of Ledger.

--verify Enable additional assertions during run-time. This causes a significant slow-
down. When combined with --debug CODE ledger will produce memory trace
information.

--verify-memory

Verify that every constructed object is properly destructed. This is for debug-
ging purposes only.

--version

Print version information and exit.

14.3.5 Pre-Commands

Pre-commands are useful when you aren’t sure how a command or option will work. The
difference between a pre-command and a regular command is that pre-commands ignore
the journal data file completely, nor is the user’s init file read.

eval VEXPR

Evaluate the given value expression against the model transaction.

format FORMAT_STRING

Print details of how ledger uses the given formatting description and apply it
against a model transaction.

generate Randomly generates syntactically valid Ledger data from a seed. Used by the
‘GenerateTests’ harness for development testing.

parse VEXPR

expr VEXPR

Print details of how ledger uses the given value expression description and apply
it against a model transaction.

Chapter 14: Ledger for Developers 126

period PERIOD_EXPRESSION

Evaluate the given period and report how Ledger interprets it:

$ ledger period "this year" --now 2011-01-01

--- Period expression tokens ---

TOK_THIS: this

TOK_YEAR: year

END_REACHED: <EOF>

--- Before stabilization ---

range: in year 2011

--- After stabilization ---

range: in year 2011

start: 11-Jan-01

finish: 12-Jan-01

--- Sample dates in range (max. 20) ---

1: 11-Jan-01

query

args Evaluate the given arguments and report how Ledger interprets it against the
following model transaction:

$ ledger query "/Book/"

--- Input arguments ---

("/Book/")

--- Context is first posting of the following transaction ---

2004/05/27 Book Store

; This note applies to all postings. :SecondTag:

Expenses:Books 20 BOOK @ $10

; Metadata: Some Value

; Typed:: $100 + $200

; :ExampleTag:

; Here follows a note describing the posting.

Liabilities:MasterCard $-200.00

--- Input expression ---

(account =~ /Book/)

--- Text as parsed ---

(account =~ /Book/)

--- Expression tree ---

0x7fd639c0da40 O_MATCH (1)

0x7fd639c10170 IDENT: account (1)

0x7fd639c10780 VALUE: /Book/ (1)

--- Compiled tree ---

0x7fd639c10520 O_MATCH (1)

0x7fd639c0d6c0 IDENT: account (1)

0x7fd639c0d680 FUNCTION (1)

0x7fd639c10780 VALUE: /Book/ (1)

--- Calculated value ---

true

script undocumented! Please help by contributing documentation for this feature.

Chapter 14: Ledger for Developers 127

template Shows the insertion template that the xact sub-command generates. This is a
debugging command.

14.4 Ledger Development Environment

14.4.1 acprep build configuration tool

14.4.2 Testing Framework

Ledger source ships with a fairly complete set of tests to verify that all is well, and no old
errors have resurfaced. Tests are run individually with ctest. All tests can be run using
make check or ninja check depending on which build tool you prefer.

Once built, the ledger executable resides under the build subdirectory in the source
tree. Tests are built and stored in the test subdirectory for the build. For example,
~/ledger/build/ledger/opt/test.

14.4.2.1 Running Tests

The complete test suite can be run from the build directory using the check option for the
build tool you use. For example, make check. The entire test suit lasts around a minute
for the optimized built and many times longer for the debug version. While developing and
debugging, running individual tests can save a great deal of time.

Individual tests can be run from the test subdirectory of the build location. To execute
a single test use ctest -V -R regex, where the regex matches the name of the test you want
to build.

There are nearly 300 tests stored under the test subdirectory in the main source dis-
tribution. They are broken into two broad categories, baseline and regression. To run the
5FBF2ED8 test, for example, issue ctest -V -R "5FB".

14.4.2.2 Writing Tests

To write a new test first decide to which broad category the test belongs: baseline or
regression. Depending on the category tests are named differently baseline tests are prefixed
with their type, e.g. ‘cmd’ (see [Baseline Test Types], page 127, for valid types), whereas
regressions are either named after the bug id, e.g. ‘1234.test’ or uuid ‘91416D62.test’.
In case several test files belong to the same bug number the files by appending _X where ‘X’
is the number of the test, e.g. ‘1234_1.test’, ‘1234_2.test’.

Baseline Test Types:

cmd Ledger commands like register or balance

dir Ledger directives like account or alias

feat Ledger features such as balance assertions in journal file

opt Ledger options such as --period or --format

A ledger test file contains three sections:

1. the journal data used for the test, this can be empty in certain scenarios

2. the ledger command-line options used for the test

Chapter 14: Ledger for Developers 128

3. the expected output

Ledger has a special command directive for tests, everything between test and end test

is treated like a comment, so every Ledger test is automatically a valid Ledger file. The
test scripts take the remainder of the test line and use it as command-line arguments for
ledger, the text enclosed in test and end test is expected output, for example:

; This is the journal data

year 2014

12/24 (C0d3) Santa Claus

Assets:Bank ¤ -150,00

Expenses:Presents

; The following line specifies the ledger command-line options for this test and

; everything between the next line and `end test` specifies the expected output

test reg --payee=code

14-Dec-24 C0d3 Assets:Bank ¤ -150,00 ¤ -150,00

14-Dec-24 C0d3 Expenses:Presents ¤ 150,00 0

end test

When it is necessary to test for errors printed to stderr redirect the test output by
adding -> to the test line and match the expected error text in an __ERROR__ section:

2014/01/01 * Acme Corporation

Assets:Bank:Checking ¤ 1.000,00

[Fund:Vacation] ¤ 300,00

[Fund:Studies] ¤ 600,00

Income:Salary ¤ -2.000,00

test reg ->

__ERROR__

While parsing file "$FILE", line 5:

While balancing transaction from "$FILE", lines 1-5:

> 2014/01/01 * Acme Corporation

> Assets:Bank:Checking ¤ 1.000,00

> [Fund:Vacation] ¤ 300,00

> [Fund:Studies] ¤ 600,00

> Income:Salary ¤ -2.000,00

Unbalanced remainder is:

¤ -100,00

Amount to balance against:

¤ 1.900,00

Error: Transaction does not balance

end test

A special $FILE variable can be used to match the journal filename used during the test.

To add new tests to the test suite use the rebuild cache option for the build tool you
use, for example make rebuild_cache, now the new tests can be run as documented in
Section 14.4.2.1 [Running Tests], page 127.

129

15 Major Changes from version 2.6

The following have been removed from Ledger 3.0:

• OFX support.

• GnuCash file import.

• The option --performance (-g).

• The balance report now defaults to showing all relevant accounts. This is the opposite
of 2.x. That is, bal in 3.0 does what ‘-s bal’ did in 2.x. To see 2.6 behavior, use
--collapse (-n) option in 3.0, like ‘bal -n’. The --subtotal (-s) option no longer
has any effect on balance reports.

The following are deprecated in Ledger 3.0:

• Single character value expressions are deprecated and should be changed to the new
value expressions available in 3.0

• The following environment variables have been renamed in Ledger 3.0:

LEDGER is now LEDGER_FILE,

LEDGER_INIT

is now LEDGER_INIT_FILE,

PRICE_HIST

is now LEDGER_PRICE_DB,

PRICE_EXP

is now LEDGER_PRICE_EXP.

130

Appendix A Example Journal File

The following journal file is included with the source distribution of ledger. It is called
drewr3.dat and exhibits many ledger features, include automatic and virtual transactions,

; -*- ledger -*-

= /^Income/

(Liabilities:Tithe) 0.12

;~ Monthly

; Assets:Checking $500.00

; Income:Salary

;~ Monthly

; Expenses:Food $100

; Assets

2010/12/01 * Checking balance

Assets:Checking $1,000.00

Equity:Opening Balances

2010/12/20 * Organic Co-op

Expenses:Food:Groceries $ 37.50 ; [=2011/01/01]

Expenses:Food:Groceries $ 37.50 ; [=2011/02/01]

Expenses:Food:Groceries $ 37.50 ; [=2011/03/01]

Expenses:Food:Groceries $ 37.50 ; [=2011/04/01]

Expenses:Food:Groceries $ 37.50 ; [=2011/05/01]

Expenses:Food:Groceries $ 37.50 ; [=2011/06/01]

Assets:Checking $ -225.00

2010/12/28=2011/01/01 Acme Mortgage

Liabilities:Mortgage:Principal $ 200.00

Expenses:Interest:Mortgage $ 500.00

Expenses:Escrow $ 300.00

Assets:Checking $ -1000.00

2011/01/02 Grocery Store

Expenses:Food:Groceries $ 65.00

Assets:Checking

2011/01/05 Employer

Assets:Checking $ 2000.00

Income:Salary

2011/01/14 Bank

; Regular monthly savings transfer

Assets:Savings $ 300.00

Assets:Checking

2011/01/19 Grocery Store

Expenses:Food:Groceries $ 44.00 ; hastag: not block

Assets:Checking

2011/01/25 Bank

; Transfer to cover car purchase

Assets:Checking $ 5,500.00

Assets:Savings

; :nobudget:

Appendix A: Example Journal File 131

apply tag hastag: true

apply tag nestedtag: true

2011/01/25 Tom's Used Cars

Expenses:Auto $ 5,500.00

; :nobudget:

Assets:Checking

2011/01/27 Book Store

Expenses:Books $20.00

Liabilities:MasterCard

end tag

2011/12/01 Sale

Assets:Checking:Business $ 30.00

Income:Sales

end tag

132

Appendix B Miscellaneous Notes

Various notes from the discussion list that I haven’t incorporated in to the main body of
the documentation.

B.1 Cookbook

B.1.1 Invoking Ledger
$ ledger --group-by "tag('trip')" bal

$ ledger cleared VWCU NFCU Tithe Misentry

$ ledger register Joint --uncleared

$ ledger register Checking --sort d -d 'd>[2011/04/01]' until 2011/05/25

B.1.2 Ledger Files
= /^Income:Taxable/

(Liabilities:Tithe Owed) -0.1

= /Noah/

(Liabilities:Tithe Owed) -0.1

= /Jonah/

(Liabilities:Tithe Owed) -0.1

= /Tithe/

(Liabilities:Tithe Owed) -1.0

133

Concepts Index

A
account, alias . 26
account, meaning of . 2
accounts, limiting by . 5
accounts, naming . 18
adorned commodity . 94
amounts . 121
assertions . 27
assets and liabilities . 7
automated transaction . 24

B
balance report . 4
beginning ledger . 18
block comments . 18
bucket . 27
buying stock . 20

C
cleared report . 6
comma separated variable file reading 55
comments . 25, 27, 30
comments, block . 18
comments, characters . 18
commodity . 19
consumable commodity pricing 21
credits and debits . 7
csv exporting . 66
csv importing . 30, 55
currency . 19
currency symbol display on windows 6

D
debts are liabilities . 7
depth spacer . 52
display total . 52
double-entry accounting . 7

E
effective date of invoice . 46
effective dates . 46
Euro conversion . 93

F
FIFO/LIFO . 94
fixated prices . 26
fixing lot prices . 21

G
Gnuplot . 53

H
historical prices . 24

I
income is negative . 7
initial equity . 18

J
journals . 4

L
LIFO/FIFO . 94
limit by payees . 50
limiting by accounts . 5

M
meaning of account . 2

N
naming accounts . 18

O
opening balance . 18

P
parent.total . 52
Payee metadata . 35
periodic transaction . 25
plotting . 53
posting format details . 17
postings . 1
pre-commands . 125
pre-declare account . 25
pre-declare commodity . 27
pre-declare tag . 29

R
register report . 5
reimbursable expense tracking 8

Concepts Index 134

S
spaces in postings . 17

T
tags . 25
transaction, automated . 24
transaction, periodic . 25
tutorial . 4

U
uncommoditized amounts . 121

W
why is income negative . 7

windows cmd.exe . 6

135

Commands & Options Index

–
-% . 69, 83, 89
--abbrev-len INT . 74
--account STR . 55, 67, 74, 86
--account-width INT . 74
--actual . 67, 74, 87
--actual-dates . 84
--add-budget . 68, 74, 97
--align-intervals . 74, 85, 96
--amount EXPR 68, 74, 88, 100, 109
--amount-data 53, 54, 69, 74, 89
--amount-width INT . 74
--anon . 70, 75
--ansi . 76
--args-only . 71, 124
--auto-match . 55, 75
--aux-date . 32, 75
--average . 64, 69, 75, 89
--average-lot-prices . 75
--balance-format FORMAT_STRING . 70, 75, 90, 109,

111
--base . 75
--basis . 70, 75, 93, 94, 123
--begin DATE . 67, 75, 87
--bold-if VEXPR . 75
--budget . 47, 68, 75, 88, 97
--budget-format FORMAT_STRING 75, 109
--by-payee 16, 35, 68, 70, 76, 88
--change . 80
--check-payees . 68, 72
--cleared . 33, 67, 76, 87
--cleared-format FORMAT_STRING 76, 90, 109
--collapse . 68, 76, 88
--collapse-if-zero . 76
--color . 76
--columns INT . 76
--cost . 75
--count . 64, 76
--csv-format FORMAT_STRING 76, 91, 109
--current . 67, 77, 87
--daily . 70, 77
--date EXPR . 77
--date-format DATE_FORMAT 69, 77, 90
--date-width INT . 77
--datetime-format DATETIME_FORMAT 77
--day-break . 72, 99
--days-of-week . 78
--dc . 67, 77
--debug CODE . 71, 124
--decimal-comma . 72
--depth INT . 78
--detail . 84
--deviation . 69, 78, 89
--display EXPR 50, 53, 69, 78, 90, 100

--display-amount EXPR . 78
--display-total EXPR . 78
--dow . 69, 70, 78, 89
--download . 24, 70, 72, 92
--effective . 46, 75
--empty . 38, 68, 78, 88
--end DATE . 67, 78, 87
--equity . 78
--exact . 78
--exchange "COMMODITY [, COMMODITY,

...]" . 21, 38, 79, 93, 94
--file FILE . 67, 72, 86
--first INT . 81
--flat . 79
--force-color . 79
--force-pager . 79
--forecast VEXPR . 68, 79, 97
--forecast-while VEXPR 68, 79
--forecast-years INT . 80
--format FORMAT_STRING 70, 80, 90, 109, 111
--gain . 70, 80, 93
--generated . 80
--group-by EXPR . 80
--group-title-format FORMAT_STRING 80
--hashes ALGO . 80
--head INT . 69, 81, 89
--help . 67, 71, 86
--historical . 81, 94
--immediate . 68, 81
--import FILE . 67
--init-file FILE . 67, 71, 86
--inject . 81
--input-date-format DATE_FORMAT 55, 72
--invert . 55, 81
--last INT . 85
--leeway INT . 70, 73, 92
--limit EXPR 50, 53, 68, 81, 88, 100
--lot-dates . 42, 81
--lot-notes . 42, 81
--lot-prices . 39, 82, 94
--lot-tags . 81
--lots . 42, 82, 94
--lots-actual . 82
--market 11, 21, 38, 70, 82, 93, 123
--master-account STR . 73
--meta TAG . 82
--meta-width INT . 82
--monthly 50, 61, 70, 82, 88, 97
--no-aliases . 73, 82
--no-color . 82
--no-pager . 69, 82, 89
--no-revalued . 82
--no-rounding . 82
--no-titles . 82

Commands & Options Index 136

--no-total . 82
--now DATE . 82, 93, 112
--only FIXME . 82
--options . 71
--output FILE . 67, 82, 86
--pager FILE . 69, 83, 89
--payee VEXPR . 83
--payee-width INT . 83
--payee=code . 16
--pedantic . 25, 68, 73
--pending . 33, 83
--percent . 69, 83, 89
--period PERIOD_EXPRESSION 67, 83, 87, 89
--period-sort VEXPR 50, 67, 85, 87
--permissive . 36, 73
--pivot TAG . 69, 83, 89
--plot-amount-format FORMAT_STRING . 69, 83, 91,

109
--plot-total-format FORMAT_STRING . . 69, 83, 92,

109
--prepend-format FORMAT_STRING 83
--prepend-width INT . 83
--price . 83, 94
--price-db FILE . 11, 70, 73, 92
--price-exp INT . 70, 73, 92
--pricedb-format FORMAT_STRING 84, 92, 109
--prices-format FORMAT_STRING . . 70, 84, 92, 109
--primary-date . 84
--quantity . 70, 84, 93
--quarterly . 68, 70, 84
--raw . 84
--real . 15, 36, 67, 84, 87
--recursive-aliases . 73
--register-format FORMAT_STRING . 70, 84, 91, 109
--related . 50, 67, 84, 87
--related-all . 84
--revalued . 84
--revalued-only . 84
--revalued-total FIXME . 84
--rich-data . 55, 84
--script FILE . 72
--seed INT . 84
--sort VEXPR . 69, 85, 89
--sort-all FIXME . 85
--sort-xacts VEXPR . 85
--start-of-week INT . 74, 85
--strict . 23, 25, 68, 73
--subtotal 50, 60, 68, 70, 85, 88
--tail INT . 69, 85
--time-colon . 73
--time-report . 85
--total VEXPR 68, 85, 88, 100, 109
--total-data 53, 54, 69, 85, 90
--total-width INT . 85
--trace INT . 72, 125
--truncate CODE . 85
--unbudgeted . 68, 85, 97
--uncleared . 33, 67, 85, 87

--unrealized . 85
--unrealized-gains STR . 85
--unrealized-losses STR . 86
--unround . 86
--value-expr VEXPR . 74
--values . 64, 86
--verbose . 72, 125
--verify . 72, 125
--verify-memory . 72, 125
--version . 67, 72, 86, 125
--weekly . 68, 70, 86, 88
--wide . 69, 86, 89
--yearly . 69, 70, 86, 89
-a STR . 67, 86
-A . 69, 75, 89
-b DATE . 67, 87
-B . 70, 75, 93
-c . 67, 87
-C . 67, 76, 87
-d EXPR . 69, 90
-D . 69, 70, 77, 89
-e DATE . 67, 87
-E . 68, 78, 88
-f FILE . 67, 72, 86
-F FORMAT_STRING . 70, 80, 90
-G . 70, 80, 93
-h . 67, 71, 86
-H . 81
-i FILE . 67, 86
-I . 83
-j . 69, 74, 89
-J . 69, 85, 90
-l EXPR . 68, 81, 88
-L . 67, 74, 87
-M . 70, 82, 88
-n . 68, 76, 88
-o FILE . 67, 86
-O . 70, 84, 93
-p PERIOD_EXPRESSION . 67, 87
-P . 68, 70, 76, 88
-Q . 70, 72, 92
-r . 67, 87
-R . 67, 84, 87
-s . 68, 70, 85, 88
-S VEXPR . 69, 85, 89
-t EXPR . 68, 74, 88
-T VEXPR . 68, 85, 88
-U . 67, 85, 87
-v . 72, 125
-V . 70, 82, 93
-w . 69, 89
-W . 68, 70, 86, 88
-X "COMMODITY [, COMMODITY, ...]" 79
-y DATE_FORMAT . 69, 77, 90
-Y . 69, 70, 86, 89
-Z INT . 70, 73, 92

Commands & Options Index 137

=
= . 24

~
~ . 25

A
abs . 104
account . 25
accounts . 23, 64
alias . 26
amount_expr . 104
ansify_if . 104
apply account . 25
apply tag . 29
args . 126
assert . 27
A . 30

B
b . 30
bal . 66
balance . 4, 54, 66
bucket . 27, 30

C
capture . 27
ceiling . 104
check . 27
cleared . 6
comment . 25, 27
commodities . 64
commodity . 27
convert . 55
csv . 54, 66
C . 12, 30

D
define . 28
draft . 64
D . 30

E
echo . 123
emacs . 56, 66
end . 28
entry . 64
equity . 31, 54, 66
eval VEXPR . 125
expr . 28
expr VEXPR . 125

F
fixed . 26
floor . 105
format . 105
format FORMAT_STRING . 125
format_date . 105
format_datetime . 105

G
generate . 125
get_at . 105

H
h . 30
help . 3

I
i . 30
include . 28
int . 107
is_seq . 105
I . 30

J
join . 105
justify . 105

L
lisp . 56, 66

M
market . 106

N
nail_down . 106
N . 30

O
o . 30
org . 57
O . 30

Commands & Options Index 138

P
parse VEXPR . 125
payee . 28
payees . 35, 64
percent . 106
period PERIOD_EXPRESSION 126
pricedb . 64, 66
pricemap . 61
prices . 64, 66
print . 27, 28, 31, 54, 66, 106
P . 24, 106

Q
quantity . 106
query . 126
quoted . 106
quoted_rfc . 106

R
reg . 66
register 5, 27, 28, 35, 54, 61, 66
reload . 124
round . 106
rounded . 106
roundto . 107

S
script . 126
scrub . 107
select . 65
should_bold . 107
source . 124
stat . 65
stats . 65
str . 107
strip . 107
S . 107

T
tag . 29
tags . 64
template . 127
test . 30
to_amount . 107
to_balance . 107
to_boolean . 107
to_date . 107
to_datetime . 107
to_int . 107
to_mask . 107
to_sequence . 107
to_string . 107
top_amount . 108
total_expr . 108
trim . 108
truncated . 108

U
unround . 108
unrounded . 108
U . 104

V
value_date . 108

X
xact . 30, 64, 66
xml . 62, 66

Y
year . 30
Y . 30

	1 Introduction to Ledger
	Fat-free Accounting
	Building the program
	Getting help
	Third-Party Ledger Tutorials

	2 Ledger Tutorial
	Start a Journal File
	Run a Few Reports
	Balance Report
	Register Report
	Cleared Report
	Using the Windows Command-Line

	3 Principles of Accounting with Ledger
	Accounting with Ledger
	Stating where money goes
	Assets and Liabilities
	Tracking reimbursable expenses

	Commodities and Currencies
	Commodity price histories
	Commodity equivalences

	Accounts and Inventories
	Understanding Equity
	Dealing with Petty Cash
	Working with multiple funds and accounts

	4 Keeping a Journal
	The Most Basic Entry
	Starting up
	Structuring your Accounts
	Commenting on your Journal
	Currency and Commodities
	Naming Commodities
	Buying and Selling Stock
	Fixing Lot Prices
	Complete control over commodity pricing

	Keeping it Consistent
	Journal Format
	Transactions and Comments
	Command Directives

	Converting from other formats
	Archiving Previous Years

	5 Transactions
	Basic format
	Eliding amounts
	Auxiliary dates
	Codes
	Transaction state
	Transaction notes
	Metadata
	Metadata tags
	Metadata values
	Typed metadata
	Payee metadata

	Virtual postings
	Expression amounts
	Balance verification
	Balance assertions
	Special assertion value 0

	Balance assignments
	Resetting a balance
	Balancing transactions

	Posting cost
	Explicit posting costs
	Primary and secondary commodities

	Posting cost expressions
	Total posting costs
	Virtual posting costs
	Commodity prices
	Total commodity prices

	Prices versus costs
	Fixated prices and costs
	Lot dates
	Lot notes
	Lot value expressions
	Automated Transactions
	Amount multipliers
	Accessing the matching posting's amount
	Referring to the matching posting's account
	Applying metadata to every matched posting
	Applying metadata to the generated posting
	State flags
	Effective Dates
	Periodic Transactions
	Concrete Example of Automated Transactions
	Tithing
	Credit Card Cashback

	6 Building Reports
	Introduction
	Balance Reports
	Controlling the Accounts and Payees
	Controlling Formatting

	Typical queries
	Reporting monthly expenses

	Advanced Reports
	Asset Allocation
	Visualizing with Gnuplot

	7 Reporting Commands
	Primary Financial Reports
	The balance command
	The equity command
	The register command
	The print command

	Reports in other Formats
	Comma Separated Values files
	The csv command
	The convert command

	The lisp command
	Emacs org Mode
	Org mode with Babel
	Embedded Ledger example with single source block
	Multiple Ledger source blocks with noweb
	Income Entries
	Expenses
	Financial Summaries
	An overall balance summary
	Generating a monthly register
	Summary

	The pricemap command
	The xml command
	prices and pricedb commands

	Reports about your Journals
	accounts
	payees
	commodities
	tags
	xact
	stats
	select

	8 Command-Line Syntax
	Basic Usage
	Command-Line Quick Reference
	Basic Reporting Commands
	Basic Options
	Report Filtering
	Error Checking and Calculation Options
	Output Customization
	Grouping Options
	Commodity Reporting

	Detailed Option Description
	Global Options
	Session Options
	Report Options
	Basic options
	Report filtering
	Output customization
	Commodity reporting
	Environment variables

	Period Expressions

	9 Budgeting and Forecasting
	Budgeting
	Forecasting

	10 Time Keeping
	11 Value Expressions
	Variables
	Posting/account details
	Calculated totals

	Functions
	Operators
	Unary Operators
	Binary Operators

	Complex expressions
	Miscellaneous

	12 Format Strings
	Format String Basics
	Format String Structure
	Format Expressions
	Balance format
	Formatting Functions and Codes
	Field Widths
	Colors
	Quantities and Calculations
	Date Functions
	Date and Time Format Codes
	Days
	Weekdays
	Month
	Miscellaneous Date Codes

	Text Formatting
	Data File Parsing Information

	13 Extending with Python
	Basic data traversal
	Raw versus Cooked
	Queries
	Embedded Python
	Amounts

	14 Ledger for Developers
	Internal Design
	Journal File Format for Developers
	Comments and meta-data
	Specifying Amounts
	Integer Amounts
	Commoditized Amounts

	Posting costs
	Primary commodities

	Developer Commands
	echo
	reload
	source
	Debug Options
	Pre-Commands

	Ledger Development Environment
	acprep build configuration tool
	Testing Framework
	Running Tests
	Writing Tests

	15 Major Changes from version 2.6
	A Example Journal File
	B Miscellaneous Notes
	Cookbook
	Invoking Ledger
	Ledger Files

	Concepts Index
	Commands & Options Index

